算法-时间复杂度和空间复杂度

刷算法必备时间和空间复杂度,记录下方便查询。

时间复杂度

概念

时间复杂度衡量的是算法 执行所需的时间 随输入规模 n 增长的变化趋势,用大O 表示法描述(通常是看这个循环)。

分类

常数时间O(1)

无论输入多大,执行时间固定。

python 复制代码
def sum(a,b):
  return a + b 

线性时间O(n)

执行时间与输入规模 n 成正比。

python 复制代码
def sum(n):
    sum = 0 
    for i in range(n):
        sum += i
    return sum 

平方时间O(n^2)

常见于双重循环,执行时间与 成正比。

python 复制代码
def sum(arr,target):
    n = len(arr)
    for i in range(n):
        for j in range(i+1,n):
            if arr[i] + arr[j] == target:
                return [i,j]
    return [-1,-1]

对数时间O(log n)

执行时间随 n 增长而增长,但增速远慢于线性(如二分查找),这里的log n是以2为底的哈。

python 复制代码
def binary_search(arr, target):
    low, high = 0, len(arr) - 1
    while low <= high:
        mid = (low + high) // 2
        if arr[mid] == target:
            return mid
        elif arr[mid] < target:
            low = mid + 1  # 每次缩小一半范围,时间复杂度 O(log n)
        else:
            high = mid - 1
    return -1

def isUgly(self, n: int) -> bool:
        if n <= 0 :
            return False
        factors = {2, 3, 5}
        for factor in factors :
            while n % factor == 0:
                n /= factor
        return n == 1
对数概念

如果 aˣ = N(a > 0,a ≠ 1),那么数 x 叫做以 a 为底 N 的对数记作:

  • a 叫做对数的底数

  • N 叫做真数

常用对数
  • 自然对数:以 e 为底(e ≈ 2.71828),记作 lnN

  • 常用对数:以 10 为底,记作 lgN 或 logN(计算机科学中常表示以2为底)

运算规则
  1. 乘法规则:logₐ(MN) = logₐM + logₐN

  2. 除法规则:logₐ(M/N) = logₐM - logₐN

  3. 幂规则:logₐMⁿ = n·logₐM

  4. 换底公式:logₐb = logₖb / logₖa (k > 0,k ≠ 1)

线性对数时间O(n log n)

转化为O(log n^n)常见于高效排序算法(如归并排序、快速排序)。

空间复杂度

概念

空间复杂度表示算法在执行过程中所需的存储空间与问题规模之间的关系,通常用大O符号表示。(通常是看这个定义参数)

分类

常数空间O(1)

算法使用的空间不随输入规模变化。

python 复制代码
def sum(n):
    # 定义了一次
    total = 0
    for i in range(n):
        total += i
    return total

线性空间O(n)

算法使用的空间与输入规模成线性关系

python 复制代码
def sum2(n,m):
    # 给每个n去*m后的数组
    return ans = [ _* m for _ in range(n)]

平方空间O(n^2)

算法使用的空间与输入规模的平方成正比

python 复制代码
def quadratic_space(n):
    # 创建N位二维数组 默认位0的
    matrix = [[0 for _ in range(n)] for _ in range(n)]
    # 等价于 [[0]* n] * n
    return matrix

对数时间O(log n)

算法使用的空间与输入规模的对数成正比

python 复制代码
def gcd_recursive(a, b):
    return a if b == 0 else gcd_recursive(b, a % b)
相关推荐
格林威1 小时前
常规线扫描镜头有哪些类型?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头
程序员莫小特3 小时前
老题新解|大整数加法
数据结构·c++·算法
过往入尘土4 小时前
服务端与客户端的简单链接
人工智能·python·算法·pycharm·大模型
zycoder.4 小时前
力扣面试经典150题day1第一题(lc88),第二题(lc27)
算法·leetcode·面试
蒙奇D索大4 小时前
【数据结构】考研数据结构核心考点:二叉排序树(BST)全方位详解与代码实现
数据结构·笔记·学习·考研·算法·改行学it
智驱力人工智能5 小时前
工厂抽烟检测系统 智能化安全管控新方案 加油站吸烟检测技术 吸烟行为智能监测
人工智能·算法·安全·边缘计算·抽烟检测算法·工厂抽烟检测系统·吸烟监测
程序员爱钓鱼5 小时前
Go语言实战案例——进阶与部署篇:编写Makefile自动构建Go项目
后端·算法·go
_Power_Y6 小时前
Java面试常用算法api速刷
java·算法·面试
艾醒(AiXing-w)6 小时前
大模型面试题剖析:模型微调中冷启动与热启动的概念、阶段与实例解析
人工智能·深度学习·算法·语言模型·自然语言处理
天选之女wow6 小时前
【代码随想录算法训练营——Day32】动态规划——509.斐波那契数、70.爬楼梯、746.使用最小花费爬楼梯
算法·leetcode·动态规划