OpenCV 图形API(80)图像与通道拼接函数-----仿射变换函数warpAffine()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

对图像应用仿射变换。

函数 warpAffine 使用指定的矩阵对源图像进行变换:
dst ( x , y ) = src ( M 11 x + M 12 y + M 13 , M 21 x + M 22 y + M 23 ) \texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23}) dst(x,y)=src(M11x+M12y+M13,M21x+M22y+M23)

当设置了标志 WARP_INVERSE_MAP 时,使用上述公式。

否则,变换矩阵会先通过 invertAffineTransform 被求逆,然后才代入上面的公式中代替 M。

该函数不能在原地(in-place)操作。

函数原型

cpp 复制代码
GMat cv::gapi::warpAffine 	
(
 	const GMat &  	src,
	const Mat &  	M,
	const Size &  	dsize,
	int  	flags = cv::INTER_LINEAR,
	int  	borderMode = cv::BORDER_CONSTANT,
	const Scalar &  	borderValue = Scalar() 
) 		

参数

  • 参数 src:输入图像。
  • 参数 M:2×3 的变换矩阵。
  • 参数 dsize:输出图像的尺寸(宽度,高度)。
  • 参数 flags:
    插值方法的组合(参见 InterpolationFlags);
    可选标志 WARP_INVERSE_MAP,表示矩阵 M 是一个"逆变换"(即从目标图像映射到源图像,dst → src)。
  • 参数 borderMode:像素外推方法(参见 BorderTypes);
    不支持 BORDER_TRANSPARENT 模式。
  • 参数 borderValue:当边界模式为常量填充时所使用的像素值;
    默认值为 0(黑色)。

代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/imgproc.hpp>

using namespace cv;
using namespace cv::gapi;

int main() {
    // 加载输入图像
    Mat src = imread("/media/dingxin/data/study/OpenCV/sources/images/Lenna.png");
    if (src.empty()) {
        std::cerr << "无法加载图像!" << std::endl;
        return -1;
    }

    // 定义仿射变换矩阵 M
    // 示例:将图像旋转 45 度,并平移 (50, 50)
    double angle = 45; // 旋转角度
    double scale = 1;  // 缩放比例
    Point2f center(src.cols / 2.0, src.rows / 2.0); // 旋转中心
    Mat M = getRotationMatrix2D(center, angle, scale);
    // 添加平移
    M.at<double>(0, 2) += 50;
    M.at<double>(1, 2) += 50;

    // 定义输出图像尺寸
    Size new_size(src.cols, src.rows);

    // 定义 G-API 图像处理图(graph)
    GMat in;  // 输入节点

    // 应用仿射变换
    GMat out = gapi::warpAffine(in, M, new_size, INTER_LINEAR, BORDER_CONSTANT, Scalar(0, 0, 0));

    // 构建 GComputation
    GComputation computation(in, out);

    // 执行计算
    Mat dst;
    computation.apply(src, dst);

    // 显示结果
    imshow("原始图像", src);
    imshow("仿射变换后的图像", dst);
    waitKey();

    return 0;
}

运行结果

相关推荐
Lethehong2 分钟前
CANN ops-nn仓库深度解读:AIGC时代的神经网络算子优化实践
人工智能·神经网络·aigc
开开心心就好3 分钟前
AI人声伴奏分离工具,离线提取伴奏K歌用
java·linux·开发语言·网络·人工智能·电脑·blender
TechWJ3 分钟前
CANN ops-nn神经网络算子库技术剖析:NPU加速的基石
人工智能·深度学习·神经网络·cann·ops-nn
凌杰4 分钟前
AI 学习笔记:LLM 的部署与测试
人工智能
心易行者6 分钟前
在 Claude 4.6 发布的当下,一个不懂编程的人聊聊 Claude Code:当 AI 终于学会自己动手干活
人工智能
子榆.7 分钟前
CANN 性能分析与调优实战:使用 msprof 定位瓶颈,榨干硬件每一分算力
大数据·网络·人工智能
爱喝白开水a7 分钟前
前端AI自动化测试:brower-use调研让大模型帮你做网页交互与测试
前端·人工智能·大模型·prompt·交互·agent·rag
学易11 分钟前
第十五节.别人的工作流,如何使用和调试(上)?(2类必现报错/缺失节点/缺失模型/思路/实操/通用调试步骤)
人工智能·ai作画·stable diffusion·报错·comfyui·缺失节点
空白诗11 分钟前
CANN ops-nn 算子解读:大语言模型推理中的 MatMul 矩阵乘实现
人工智能·语言模型·矩阵
空白诗17 分钟前
CANN ops-nn 算子解读:AIGC 风格迁移中的 BatchNorm 与 InstanceNorm 实现
人工智能·ai