Spark缓存--persist方法

1. 功能本质

persist:这是一个通用的持久化 方法,能够指定多种不同的存储级别。存储级别决定了数据的存储位置(如内存、磁盘)以及存储形式(如是否序列化)。

2. 存储级别指定

persist:可以通过传入 StorageLevel 参数来指定不同的持久化级别。常见的持久化级别有:

MEMORY_ONLY:将 RDD 以 Java 对象的形式存储在 JVM 的内存中。若内存不足,部分分区将不会被缓存,需要时会重新计算。

MEMORY_AND_DISK:优先把 RDD 以 Java 对象的形式存储在 JVM 的内存中。若内存不足,会把多余的分区存储到磁盘上。

DISK_ONLY:将 RDD 的数据存储在磁盘上。

MEMORY_ONLY_SER:将 RDD 以序列化的 Java 对象形式存储在内存中,相较于 MEMORY_ONLY,序列化后占用的内存空间更小,但读取时需要进行反序列化操作,会带来一定的性能开销。

MEMORY_AND_DISK_SER:优先将 RDD 以序列化的 Java 对象形式存储在内存中,内存不足时存储到磁盘上。

cache:不能指定存储级别,它固定使用 MEMORY_ONLY 存储级别。

3.persist的示例

下面我们以DISK_ONLY为例,改写上面的程序,验证它的持久化效果。具体要改动的地方有两个: 指定持久化地址; 把cache改成persist;

conf.set("spark.local.dir", "/path/to/your/local/dir")

sc = SparkContext(conf)

val cachedRDD = largeRDD.map(complexTransformation).persist(StorageLevel.MEMORY_ONLY)

4. persist() 的核心优势

  1. 灵活性:可根据数据大小、集群资源选择最优存储策略。

  2. 性能优化

    • 内存充足时用 MEMORY_ONLY 避免磁盘 IO。

    • 内存不足时用 MEMORY_AND_DISK 避免频繁重计算。

  3. 资源平衡 :通过序列化(如 MEMORY_ONLY_SER)减少内存占用,降低 OOM 风险。


5. 何时使用 persist()

适用场景
  • 迭代算法:如机器学习中的梯度下降、图计算的 PageRank。

  • 多阶段计算:同一数据集被多次用于不同操作(如过滤、聚合、JOIN)。

  • 交互式分析:在 Spark Shell 或 Notebook 中多次查询同一数据集。

不适用场景
  • 数据仅使用一次:缓存反而浪费资源。

  • 存储成本高于计算成本:如数据极大且后续操作简单。

相关推荐
夏天吃哈密瓜4 小时前
Spark-core-RDD入门
大数据·分布式·spark
科技小E5 小时前
国标GB28181视频平台EasyCVR安防系统部署知识:如何解决异地监控集中管理和组网问题
大数据·网络·人工智能·音视频
chat2tomorrow6 小时前
如何使用 QuickAPI 推动医院数据共享 —— 基于数据仓库场景的实践
大数据·数据仓库·人工智能·医院·sql2api
lcw_lance6 小时前
数字孪生[IOC]常用10个技术栈(总括)
大数据·运维·人工智能
星宸追风7 小时前
Git查看某个commit的改动
大数据·elasticsearch·搜索引擎
鱼儿也有烦恼7 小时前
Redis最新入门教程
数据库·redis·缓存
悻运7 小时前
如何在sheel中运行Spark
大数据·分布式·spark
caihuayuan58 小时前
[数据库之十四] 数据库索引之位图索引
java·大数据·spring boot·后端·课程设计
@CLoudbays_Martin118 小时前
CF后台如何设置TCP 和 UDP 端口?
大数据·运维·服务器·网络·数据库