Spark缓存--persist方法

1. 功能本质

persist:这是一个通用的持久化 方法,能够指定多种不同的存储级别。存储级别决定了数据的存储位置(如内存、磁盘)以及存储形式(如是否序列化)。

2. 存储级别指定

persist:可以通过传入 StorageLevel 参数来指定不同的持久化级别。常见的持久化级别有:

MEMORY_ONLY:将 RDD 以 Java 对象的形式存储在 JVM 的内存中。若内存不足,部分分区将不会被缓存,需要时会重新计算。

MEMORY_AND_DISK:优先把 RDD 以 Java 对象的形式存储在 JVM 的内存中。若内存不足,会把多余的分区存储到磁盘上。

DISK_ONLY:将 RDD 的数据存储在磁盘上。

MEMORY_ONLY_SER:将 RDD 以序列化的 Java 对象形式存储在内存中,相较于 MEMORY_ONLY,序列化后占用的内存空间更小,但读取时需要进行反序列化操作,会带来一定的性能开销。

MEMORY_AND_DISK_SER:优先将 RDD 以序列化的 Java 对象形式存储在内存中,内存不足时存储到磁盘上。

cache:不能指定存储级别,它固定使用 MEMORY_ONLY 存储级别。

3.persist的示例

下面我们以DISK_ONLY为例,改写上面的程序,验证它的持久化效果。具体要改动的地方有两个: 指定持久化地址; 把cache改成persist;

conf.set("spark.local.dir", "/path/to/your/local/dir")

sc = SparkContext(conf)

val cachedRDD = largeRDD.map(complexTransformation).persist(StorageLevel.MEMORY_ONLY)

4. persist() 的核心优势

  1. 灵活性:可根据数据大小、集群资源选择最优存储策略。

  2. 性能优化

    • 内存充足时用 MEMORY_ONLY 避免磁盘 IO。

    • 内存不足时用 MEMORY_AND_DISK 避免频繁重计算。

  3. 资源平衡 :通过序列化(如 MEMORY_ONLY_SER)减少内存占用,降低 OOM 风险。


5. 何时使用 persist()

适用场景
  • 迭代算法:如机器学习中的梯度下降、图计算的 PageRank。

  • 多阶段计算:同一数据集被多次用于不同操作(如过滤、聚合、JOIN)。

  • 交互式分析:在 Spark Shell 或 Notebook 中多次查询同一数据集。

不适用场景
  • 数据仅使用一次:缓存反而浪费资源。

  • 存储成本高于计算成本:如数据极大且后续操作简单。

相关推荐
2301_781668611 小时前
Elasticsearch 02
大数据·elasticsearch·搜索引擎
isfox2 小时前
Google GFS 深度解析:分布式文件系统的开山之作
大数据·hadoop
上官浩仁3 小时前
springboot redisson 缓存入门与实战
spring boot·redis·缓存
用户Taobaoapi20143 小时前
京东店铺所有商品API技术开发文档
大数据·数据挖掘·数据分析
在未来等你3 小时前
Kafka面试精讲 Day 8:日志清理与数据保留策略
大数据·分布式·面试·kafka·消息队列
江畔独步4 小时前
Flink TaskManager日志时间与实际时间有偏差
大数据·flink
TDengine (老段)4 小时前
TDengine 选择函数 Last() 用户手册
大数据·数据库·sql·物联网·时序数据库·tdengine·涛思数据
TDengine (老段)5 小时前
TDengine 选择函数 First 用户手册
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
沧海一粟青草喂马6 小时前
抖音批量上传视频怎么弄?抖音矩阵账号管理的专业指南
大数据·人工智能·矩阵
络76 小时前
Redis 非缓存核心场景及实例说明
数据库·redis·缓存