OpenCV 中用于背景分割的一个类cv::bgsegm::BackgroundSubtractorLSBP

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::bgsegm::BackgroundSubtractorLSBP 是 OpenCV 中用于背景分割的一个类,它基于局部样本二进制模式(Local Sample Binary Pattern, LSBP)进行背景建模。该算法特别适用于处理光照变化、阴影以及动态背景等复杂场景。

主要特点

  • 高效性:能够在保持较高检测准确性的同时实现较快的处理速度。
  • 适应性强:能够很好地适应光照变化和其他环境变化。
  • 参数可调:允许用户通过调整多个参数来优化背景建模过程。
  • 基于纹理信息:利用了图像中的局部纹理信息(LSBP),从而提高了前景检测的鲁棒性。

构造函数

与大多数现代 OpenCV 背景减除器一样,不直接使用构造函数创建 BackgroundSubtractorLSBP 实例,而是通过工厂方法 cv::bgsegm::createBackgroundSubtractorLSBP() 来创建实例。

cpp 复制代码
Ptr<BackgroundSubtractorLSBP> cv::bgsegm::createBackgroundSubtractorLSBP
(
    int mc = 4,
    int nSamples = 20,
    float noiseRemovalThresholdFacBG = 0.0004f,
    float noiseRemovalThresholdFacFG = 0.0008f,
    int LSBPRadius = 16,
    float Tlower = 2.0f,
    float Tupper = 32.0f,
    float Tinc = 1.0f,
    float Tdec = 0.05f,
    float Rscale = 10.0f,
    float Rincdec = 0.005f,
    double noiseCount = 7,
    double binaryThreshold = 2,
    bool useLAB = true
);

参数:

  • mc: 每个像素的最大成分数量,默认值为 4。
  • nSamples: 需要初始化的样本数,默认值为 20。
  • noiseRemovalThresholdFacBG: 背景噪声移除阈值因子,默认值为 0.0004。
  • noiseRemovalThresholdFacFG: 前景噪声移除阈值因子,默认值为 0.0008。
  • LSBPRadius: LSBP 算法使用的半径,默认值为 16。
  • Tlower: 下限阈值,默认值为 2.0。
  • Tupper: 上限阈值,默认值为 32.0。
  • Tinc: 阈值增加量,默认值为 1.0。
  • Tdec: 阈值减少量,默认值为 0.05。
  • Rscale: 缩放比例,默认值为 10.0。
  • Rincdec: 缩放增量/减量,默认值为 0.005。
  • noiseCount: 噪声计数,默认值为 7。
  • binaryThreshold: 二值化阈值,默认值为 2。
  • useLAB: 是否使用 LAB 颜色空间,默认值为 true。

主要函数

apply函数

函数原型
cpp 复制代码
void apply
(
	InputArray image, OutputArray fgmask, double learningRate=-1
);
参数
  • image: 输入当前帧。
  • fgmask: 输出前景掩码图像。
  • learningRate: 学习率,决定了新获取的信息对模型的影响速度。默认值 -1 表示自动选择学习率。

getBackgroundImage函数

函数原型
cpp 复制代码
void getBackgroundImage
(
	OutputArray backgroundImage
) const;
参数
  • backgroundImage: 输出背景图像。

代码示例

cpp 复制代码
#include <opencv2/bgsegm.hpp>
#include <opencv2/opencv.hpp>

int main()
{
    cv::VideoCapture cap( 0 );  // 打开摄像头
    if ( !cap.isOpened() )
    {
        std::cerr << "无法打开摄像头!" << std::endl;
        return -1;
    }

    // 创建 LSBP 背景减除器
    cv::Ptr< cv::bgsegm::BackgroundSubtractorLSBP > bgSubtractor = cv::bgsegm::createBackgroundSubtractorLSBP();

    cv::Mat frame, fgMask;

    while ( true )
    {
        cap >> frame;  // 获取新帧
        if ( frame.empty() )
            break;  // 到达视频结尾

        bgSubtractor->apply( frame, fgMask );  // 应用背景减除器

        cv::imshow( "Original Frame", frame );
        cv::imshow( "Foreground Mask", fgMask );

        if ( cv::waitKey( 30 ) >= 0 )
            break;  // 按任意键退出
    }

    return 0;
}

运行结果

相关推荐
whoarethenext5 分钟前
C/C++ OpenCV 矩阵运算
c语言·c++·opencv·矩阵运算
道可云19 分钟前
道可云人工智能每日资讯|北京农业人工智能与机器人研究院揭牌
人工智能·机器人·ar·deepseek
艾醒(AiXing-w)36 分钟前
探索大语言模型(LLM):参数量背后的“黄金公式”与Scaling Law的启示
人工智能·语言模型·自然语言处理
极光JIGUANG37 分钟前
GPTBots在AI大语言模型应用中敏感数据匿名化探索和实践
人工智能
飞哥数智坊38 分钟前
AI生图还在等?混元图像2.0让你“实时”见效果
人工智能
nvvas1 小时前
AI互联网辅助工具
人工智能·chatgpt
蹦蹦跳跳真可爱5891 小时前
Python----目标检测(《SSD: Single Shot MultiBox Detector》论文和SSD的原理与网络结构)
人工智能·python·深度学习·神经网络·目标检测·计算机视觉
love530love1 小时前
Windows 下部署 SUNA 项目:虚拟环境尝试与最终方案
前端·人工智能·windows·后端·docker·rust·开源
hahaha60161 小时前
农业机器人的开发
人工智能·计算机视觉
xiaoli23271 小时前
机器学习——SVM
人工智能·机器学习·支持向量机