面试常问系列(一)-神经网络参数初始化-之-softmax

背景

本文内容还是对之前关于面试题transformer的一个延伸,详细讲解一下softmax
面试常问系列(二)-神经网络参数初始化之自注意力机制-CSDN博客

Softmax函数的梯度特性与输入值的幅度密切相关,这是Transformer中自注意力机制需要缩放点积结果的关键原因。以下从数学角度展开分析:

1. Softmax 函数回顾

给定输入向量 z = [z₁, z₂, ..., zₖ],Softmax 输出概率为:

其中 S 是归一化因子。

2. 梯度计算目标

计算 Softmax 对输入 z 的梯度,即 对所有 i,j∈{1,...,k}。

3. 梯度推导

根据链式法则,对 σi​ 关于 zj​ 求导:

具体推到过程就不展示了,感兴趣的有需要的可以评论下。因为本次重点不是通用的softmax分析,而是偏实战分析。

4. 与交叉熵损失结合的梯度

在实际应用中,Softmax 通常与交叉熵损失 结合使用。此时梯度计算更简单:

其中 是真实标签的 one-hot 编码。

5. 推导

  1. 交叉熵损失对 的梯度:
  1. 通过链式法则:
  1. 代入在上面求解出的
  • 时,
  • 时,

4.合并上述结果

6. 梯度消失问题

  • 极端输入值 :若远大于其他,则,其他。此时:
    • 的梯度:(若yk=1,梯度接近0)。
    • 对其他zi的梯度:,梯度趋近于0。
  • 后果:梯度消失导致参数更新困难,模型难以训练。

7. 缩放的作用

在Transformer中,点积结果除以dk​​后:

  • 输入值范围受限 :缩放后的方差为1,避免极端值。
  • 梯度稳定性提升分布更均匀,不会趋近于0,梯度保持有效。

5. 直观示例

  • 未缩放:若dk=512,点积标准差结果可能达±22,Softmax输出接近0或1,梯度消失。
  • 缩放后:点积结果范围约±5,σ(zi)分布平缓,梯度稳定。
  • 这个示例在最开始的跳转链接有详细解释,可以参考。

总结

Softmax的梯度对输入值敏感,过大输入会导致梯度消失。Transformer通过除以dk​​控制点积方差,确保Softmax输入值合理,从而保持梯度稳定,提升训练效率。这一设计是深度学习中处理高维数据时的重要技巧。

相关推荐
神龙斗士24019 分钟前
Java 数组的定义与使用
java·开发语言·数据结构·算法
白露与泡影20 分钟前
2025互联网大厂高频Java面试真题解析
java·开发语言·面试
Y.O.U..24 分钟前
力扣HOT100-跳跃游戏II
算法·leetcode
hn小菜鸡25 分钟前
LeetCode 3132.找出与数组相加的整数 II
算法·leetcode·职场和发展
微笑尅乐29 分钟前
数组模拟加法——力扣66.加一
算法·leetcode·职场和发展
_不会dp不改名_1 小时前
leetcode_146 LRU缓存
算法·leetcode·缓存
aloha_7891 小时前
新国都面试真题
jvm·spring boot·spring·面试·职场和发展
帅帅爱数学2 小时前
DeepMimic论文详细解析:基于示例引导的深度强化学习实现物理仿真角色技能
算法·强化学习
我是华为OD~HR~栗栗呀2 小时前
测试转C++开发面经(华为OD)
java·c++·后端·python·华为od·华为·面试