sklearn自定义pipeline的数据处理

将自定义的频数编码处理整合到sklearn的pipeline流程里面:

python 复制代码
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import make_pipeline, Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import PolynomialFeatures # 多项式
from sklearn.metrics import confusion_matrix, classification_report, roc_auc_score
import lightgbm as lgb

import pandas as pd

def load_data(path):
    data = pd.read_csv(path,usecols=lambda col: col != 'id')
    data['subscribe'] = data['subscribe'].apply(lambda x: 1 if x == 'yes' else 0,)
    return data

# 自定义转换器1 将类别特征按频次编码
class Freqencode(BaseEstimator, TransformerMixin):
    def __init__(self, cat_cols=[]):
        self.cat_cols = cat_cols
    # 返回对象本身
    def fit(self, X, y=None):
        # 计算统计量
        return self
    # 转换数据
    def transform(self, X):
        # 数据转换逻辑
        for col in self.cat_cols:
            freq = X[col].value_counts(normalize=True).to_dict()
            X[col] = X[col].map(freq)
        return X


def pipeline_model(cat_cols):
    pip_model = Pipeline(steps=[
                    ('freq_encode', Freqencode(cat_cols=cat_cols)),
                    ('imputer', SimpleImputer(strategy='mean')),
                    ('poly', PolynomialFeatures(degree=2, interaction_only=False, include_bias=False)),
                    ('model', lgb.LGBMClassifier(verbose=-1)),
                    ])
    return pip_model


if __name__ == '__main__':
    path = r"C:\Users\12048\Desktop\python_code\data\train.csv"
    data = load_data(path)
    # 类别特征
    cat_cols = list(data.select_dtypes(include=['object']).columns)

    x, y = data.drop(labels='subscribe', axis=1), data['subscribe']
    pip_model = pipeline_model(cat_cols)
    pip_model.fit(x, y)

    print('训练集表现:')
    prob = pip_model.predict_proba(x)[:,1]
    train_pred = [1 if i>0.5 else 0 for i in prob]
    print('混淆矩阵:\n',confusion_matrix(y, train_pred))
    print('模型报告:\n',classification_report(y, train_pred))
    print('auc:',roc_auc_score(y, prob))
相关推荐
非门由也1 小时前
《sklearn机器学习——数据预处理》类别特征编码
人工智能·机器学习·sklearn
FairyGirlhub2 小时前
神经网络的初始化:权重与偏置的数学策略
人工智能·深度学习·神经网络
大写-凌祁6 小时前
零基础入门深度学习:从理论到实战,GitHub+开源资源全指南(2025最新版)
人工智能·深度学习·开源·github
焦耳加热6 小时前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
CodeCraft Studio6 小时前
PDF处理控件Aspose.PDF教程:使用 Python 将 PDF 转换为 Base64
开发语言·python·pdf·base64·aspose·aspose.pdf
深空数字孪生6 小时前
储能调峰新实践:智慧能源平台如何保障风电消纳与电网稳定?
大数据·人工智能·物联网
wan5555cn7 小时前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
格林威7 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
困鲲鲲8 小时前
Python中内置装饰器
python
摩羯座-185690305948 小时前
Python数据可视化基础:使用Matplotlib绘制图表
大数据·python·信息可视化·matplotlib