sklearn自定义pipeline的数据处理

将自定义的频数编码处理整合到sklearn的pipeline流程里面:

python 复制代码
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import make_pipeline, Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import PolynomialFeatures # 多项式
from sklearn.metrics import confusion_matrix, classification_report, roc_auc_score
import lightgbm as lgb

import pandas as pd

def load_data(path):
    data = pd.read_csv(path,usecols=lambda col: col != 'id')
    data['subscribe'] = data['subscribe'].apply(lambda x: 1 if x == 'yes' else 0,)
    return data

# 自定义转换器1 将类别特征按频次编码
class Freqencode(BaseEstimator, TransformerMixin):
    def __init__(self, cat_cols=[]):
        self.cat_cols = cat_cols
    # 返回对象本身
    def fit(self, X, y=None):
        # 计算统计量
        return self
    # 转换数据
    def transform(self, X):
        # 数据转换逻辑
        for col in self.cat_cols:
            freq = X[col].value_counts(normalize=True).to_dict()
            X[col] = X[col].map(freq)
        return X


def pipeline_model(cat_cols):
    pip_model = Pipeline(steps=[
                    ('freq_encode', Freqencode(cat_cols=cat_cols)),
                    ('imputer', SimpleImputer(strategy='mean')),
                    ('poly', PolynomialFeatures(degree=2, interaction_only=False, include_bias=False)),
                    ('model', lgb.LGBMClassifier(verbose=-1)),
                    ])
    return pip_model


if __name__ == '__main__':
    path = r"C:\Users\12048\Desktop\python_code\data\train.csv"
    data = load_data(path)
    # 类别特征
    cat_cols = list(data.select_dtypes(include=['object']).columns)

    x, y = data.drop(labels='subscribe', axis=1), data['subscribe']
    pip_model = pipeline_model(cat_cols)
    pip_model.fit(x, y)

    print('训练集表现:')
    prob = pip_model.predict_proba(x)[:,1]
    train_pred = [1 if i>0.5 else 0 for i in prob]
    print('混淆矩阵:\n',confusion_matrix(y, train_pred))
    print('模型报告:\n',classification_report(y, train_pred))
    print('auc:',roc_auc_score(y, prob))
相关推荐
陈天伟教授1 小时前
基于学习的人工智能(3)机器学习基本框架
人工智能·学习·机器学习·知识图谱
搞科研的小刘选手2 小时前
【厦门大学主办】第六届计算机科学与管理科技国际学术会议(ICCSMT 2025)
人工智能·科技·计算机网络·计算机·云计算·学术会议
fanstuck2 小时前
深入解析 PyPTO Operator:以 DeepSeek‑V3.2‑Exp 模型为例的实战指南
人工智能·语言模型·aigc·gpu算力
萤丰信息2 小时前
智慧园区能源革命:从“耗电黑洞”到零碳样本的蜕变
java·大数据·人工智能·科技·安全·能源·智慧园区
世洋Blog2 小时前
更好的利用ChatGPT进行项目的开发
人工智能·unity·chatgpt
笨笨聊运维5 小时前
CentOS官方不维护版本,配置python升级方法,无损版
linux·python·centos
Gerardisite5 小时前
如何在微信个人号开发中有效管理API接口?
java·开发语言·python·微信·php
小毛驴8506 小时前
软件设计模式-装饰器模式
python·设计模式·装饰器模式