sklearn自定义pipeline的数据处理

将自定义的频数编码处理整合到sklearn的pipeline流程里面:

python 复制代码
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import make_pipeline, Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import PolynomialFeatures # 多项式
from sklearn.metrics import confusion_matrix, classification_report, roc_auc_score
import lightgbm as lgb

import pandas as pd

def load_data(path):
    data = pd.read_csv(path,usecols=lambda col: col != 'id')
    data['subscribe'] = data['subscribe'].apply(lambda x: 1 if x == 'yes' else 0,)
    return data

# 自定义转换器1 将类别特征按频次编码
class Freqencode(BaseEstimator, TransformerMixin):
    def __init__(self, cat_cols=[]):
        self.cat_cols = cat_cols
    # 返回对象本身
    def fit(self, X, y=None):
        # 计算统计量
        return self
    # 转换数据
    def transform(self, X):
        # 数据转换逻辑
        for col in self.cat_cols:
            freq = X[col].value_counts(normalize=True).to_dict()
            X[col] = X[col].map(freq)
        return X


def pipeline_model(cat_cols):
    pip_model = Pipeline(steps=[
                    ('freq_encode', Freqencode(cat_cols=cat_cols)),
                    ('imputer', SimpleImputer(strategy='mean')),
                    ('poly', PolynomialFeatures(degree=2, interaction_only=False, include_bias=False)),
                    ('model', lgb.LGBMClassifier(verbose=-1)),
                    ])
    return pip_model


if __name__ == '__main__':
    path = r"C:\Users\12048\Desktop\python_code\data\train.csv"
    data = load_data(path)
    # 类别特征
    cat_cols = list(data.select_dtypes(include=['object']).columns)

    x, y = data.drop(labels='subscribe', axis=1), data['subscribe']
    pip_model = pipeline_model(cat_cols)
    pip_model.fit(x, y)

    print('训练集表现:')
    prob = pip_model.predict_proba(x)[:,1]
    train_pred = [1 if i>0.5 else 0 for i in prob]
    print('混淆矩阵:\n',confusion_matrix(y, train_pred))
    print('模型报告:\n',classification_report(y, train_pred))
    print('auc:',roc_auc_score(y, prob))
相关推荐
Christo310 小时前
关于K-means和FCM的凸性问题讨论
人工智能·算法·机器学习·数据挖掘·kmeans
飞翔的佩奇10 小时前
【完整源码+数据集+部署教程】 水果叶片分割系统: yolov8-seg-dyhead
人工智能·yolo·计算机视觉·数据集·yolov8·yolo11·水果叶片分割系统
感谢地心引力10 小时前
【Python】基于 PyQt6 和 Conda 的 PyInstaller 打包工具
数据库·python·conda·pyqt·pyinstaller
小许学java11 小时前
Spring AI快速入门以及项目的创建
java·开发语言·人工智能·后端·spring·ai编程·spring ai
人工智能技术派11 小时前
Qwen-Audio:一种新的大规模音频-语言模型
人工智能·语言模型·音视频
lpfasd12311 小时前
从OpenAI发布会看AI未来:中国就业市场的重构与突围
人工智能·重构
春末的南方城市11 小时前
清华&字节开源HuMo: 打造多模态可控的人物视频,输入文字、图片、音频,生成电影级的视频,Demo、代码、模型、数据全开源。
人工智能·深度学习·机器学习·计算机视觉·aigc
whltaoin12 小时前
Java 后端与 AI 融合:技术路径、实战案例与未来趋势
java·开发语言·人工智能·编程思想·ai生态
中杯可乐多加冰12 小时前
smardaten AI + 无代码开发实践:基于自然语言交互快速开发【苏超赛事管理系统】
人工智能
Hy行者勇哥12 小时前
数据中台的数据源与数据处理流程
大数据·前端·人工智能·学习·个人开发