【学习笔记】机器学习(Machine Learning) | 第六章(2)| 过拟合问题

机器学习(Machine Learning)

简要声明

基于吴恩达教授(Andrew Ng)课程视频
BiliBili课程资源


文章目录


过拟合与欠拟合问题

解决过拟合问题

一、收集更多训练数据

增加训练数据量是解决过拟合的一种有效方法。更多的数据可以帮助模型学习到更通用的模式,减少过拟合的风险。

  • 原理:更多的训练样本可以提供更全面的信息,使模型更好地泛化。
  • 示例:如果模型在有限的房屋价格数据上过拟合,增加更多不同大小、价格的房屋数据可以使模型更准确地预测新数据。

二、选择特征

选择合适的特征可以减少模型的复杂度,从而降低过拟合的可能性。

  • 特征选择:从众多特征中选择最相关的特征,去除无关或冗余的特征。
  • 优点:减少模型复杂度,提高训练速度。
  • 缺点:可能丢失一些有用的信息。
特征选择方法 说明
Filter Methods 通过相关性分析等方法预选特征
Wrapper Methods 通过模型性能评估选择特征组合
Embedded Methods 在模型训练过程中自动选择特征

三、正则化

正则化是一种通过在损失函数中添加惩罚项来限制模型复杂度的方法。

  • L1正则化 :添加参数的绝对值之和。公式为: λ ∑ j = 1 n ∣ w j ∣ \lambda \sum_{j=1}^{n} |w_j| λj=1∑n∣wj∣
  • L2正则化 :添加参数的平方和。公式为: λ ∑ j = 1 n w j 2 \lambda \sum_{j=1}^{n} w_j^2 λj=1∑nwj2
  • 作用:使参数值更小,减少模型对单个特征的依赖。
正则化方法 优点 缺点
L1正则化 可进行特征选择,稀疏性好 收敛速度较慢
L2正则化 收敛速度快,稳定性好 无法进行特征选择

四、过拟合解决方法总结

方法 适用场景 优点 缺点
收集更多数据 训练数据量不足时 提高模型泛化能力 数据收集成本高
特征选择 特征数量多且存在冗余特征时 减少模型复杂度,提高训练速度 可能丢失有用信息
正则化 模型参数量大,容易过拟合时 有效控制模型复杂度,提高泛化能力 需要调整正则化参数
交叉验证 数据集有限,需要充分利用数据进行模型评估时 减少数据浪费,提高模型评估准确性 计算成本高
早停 模型训练时间长,容易过拟合时 防止模型在训练集上过优化,保存较好的泛化能力 需要确定合适的停止点

continue...

相关推荐
极小狐27 分钟前
如何构建容器镜像并将其推送到极狐GitLab容器镜像库?
开发语言·数据库·机器学习·gitlab·ruby
孤寂大仙v1 小时前
【Linux笔记】——进程信号的产生
linux·服务器·笔记
正在走向自律1 小时前
从0到1:Python机器学习实战全攻略(8/10)
开发语言·python·机器学习
愚戏师1 小时前
Linux复习笔记(三) 网络服务配置(web)
linux·运维·笔记
scdifsn3 小时前
动手学深度学习12.4.硬件-笔记&练习(PyTorch)
pytorch·笔记·深度学习·缓存·内存·硬盘·深度学习硬件
lwewan3 小时前
26考研——中央处理器_异常和中断机制(5)
笔记·考研
潇-xiao5 小时前
流体力学绪论(期末复习)
笔记
小彭律师5 小时前
电动汽车充换电设施可调能力聚合评估与预测 - 使用说明文档
笔记
满怀10156 小时前
【人工智能核心技术全景解读】从机器学习到深度学习实战
人工智能·python·深度学习·机器学习·tensorflow