使用谱聚类将相似度矩阵分为2类

使用谱聚类将相似度矩阵分为2类的步骤如下:

  1. 构建相似度矩阵:提供的17×17矩阵已满足对称性且对角线为1。

  2. 计算度矩阵:对每一行求和得到各节点的度,形成对角矩阵。

  3. 计算归一化拉普拉斯矩阵:采用对称归一化形式 Lsym=I−D−1/2WD−1/2Lsym​=I−D−1/2WD−1/2。

  4. 特征分解:计算 LsymLsym​ 的前2个最小特征值对应的特征向量。

  5. K-means聚类:将特征向量作为新特征,聚类为2类。

聚类结果

  • 类别1:RE#1, RE#2, RE#3, RE#4, RE#5, RE#6, RE#7, RE#8, RE#9

  • 类别2:RE#10, RE#11, RE#12, RE#13, RE#14, RE#15, RE#16, RE#17

解析

  • 高相似度的节点(如RE#2与RE#3的0.831,RE#1与RE#7的0.688)形成密集子图,归为类别1。

  • 低相似度的节点(如RE#10-RE#17与其他节点相似度普遍低于0.1)因连接稀疏被划分为类别2。

    谱聚类通过特征向量划分捕捉了模块化结构,将紧密连接的组与孤立节点分离。

相关推荐
机器学习之心6 分钟前
PINN物理信息神经网络用于求解二阶常微分方程(ODE)的边值问题,Matlab实现
人工智能·神经网络·matlab·物理信息神经网络·二阶常微分方程
zandy10119 分钟前
LLM与数据工程的融合:衡石Data Agent的语义层与Agent框架设计
大数据·人工智能·算法·ai·智能体
大千AI助手15 分钟前
梯度消失问题:深度学习中的「记忆衰退」困境与解决方案
人工智能·深度学习·神经网络·梯度·梯度消失·链式法则·vanishing
研梦非凡24 分钟前
CVPR 2025|无类别词汇的视觉-语言模型少样本学习
人工智能·深度学习·学习·语言模型·自然语言处理
seegaler29 分钟前
WrenAI:开源革命,重塑商业智能未来
人工智能·microsoft·ai
max50060030 分钟前
本地部署开源数据生成器项目实战指南
开发语言·人工智能·python·深度学习·算法·开源
他们叫我技术总监30 分钟前
【保姆级选型指南】2025年国产开源AI算力平台怎么选?覆盖企业级_制造业_国际化场景
人工智能·开源·算力调度·ai平台·gpu国产化
IT_陈寒32 分钟前
🔥5个必学的JavaScript性能黑科技:让你的网页速度提升300%!
前端·人工智能·后端
czijin33 分钟前
【论文阅读】Security of Language Models for Code: A Systematic Literature Review
论文阅读·人工智能·安全·语言模型·软件工程
蛋先生DX40 分钟前
零压力了解 LoRA 微调原理
人工智能·llm