代码随想录算法训练营第六十三天| 图论9—卡码网47. 参加科学大会,94. 城市间货物运输 I

每日被新算法方式轰炸的一天,今天是dijkstra(堆优化版)以及Bellman_ford ,尝试理解中,属于是只能照着代码大概说一下在干嘛。

47. 参加科学大会

https://kamacoder.com/problempage.php?pid=1047

dijkstra(堆优化版),主要区别用gpt总结了一下

  1. 第一步,选源点到哪个节点近且该节点未被访问过
  2. 第二步,该最近节点被标记访问过
  3. 第三步,更新非访问节点到源点的距离(即更新minDist数组)

其中核心部分主要是最小堆来从当前所有候选路径中找出距离起点最近的节点,更新它所连接的其他节点的最短路径值。从堆里取出当前距离起点最近的节点,并尝试用它来更新所有邻接点的距离,直到终点被访问或堆为空。也就是中间while函数的意义,其余代码主要是构建堆以及处理输入。

python 复制代码
import heapq

class Edge:
    def __init__(self, to, val):
        self.to = to
        self.val = val

def dijkstra(n, m, edges, start, end):
    grid = [[] for _ in range(n + 1)]

    for p1, p2, val in edges:
        grid[p1].append(Edge(p2, val))

    minDist = [float('inf')] * (n + 1)
    visited = [False] * (n + 1)

    pq = []
    heapq.heappush(pq, (0, start))
    minDist[start] = 0

    while pq:
        cur_dist, cur_node = heapq.heappop(pq)

        if visited[cur_node]:
            continue

        visited[cur_node] = True

        for edge in grid[cur_node]:
            if not visited[edge.to] and cur_dist + edge.val < minDist[edge.to]:
                minDist[edge.to] = cur_dist + edge.val
                heapq.heappush(pq, (minDist[edge.to], edge.to))

    return -1 if minDist[end] == float('inf') else minDist[end]

# 输入
n, m = map(int, input().split())
edges = [tuple(map(int, input().split())) for _ in range(m)]
start = 1  # 起点
end = n    # 终点

# 运行算法并输出结果
result = dijkstra(n, m, edges, start, end)
print(result)

94. 城市间货物运输 I

https://kamacoder.com/problempage.php?pid=1152

最主要区别在于Bellman_ford能解决负数的权重的问题,而dijkstra不行,

Bellman_ford算法的核心思想是 对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路。

然后是该算法的核心思想:松弛操作

  • 外层循环最多执行 n-1 次(这是 Bellman-Ford 的核心步骤)

  • 每次遍历所有边,尝试更新目标点的最短距离(即"松弛"操作)

  • 如果一轮下来没有任何更新,说明最短路径已稳定,提前退出循环(优化)

python 复制代码
def main():
    n, m = map(int, input().strip().split())
    edges = []
    for _ in range(m):
        src, dest, weight = map(int, input().strip().split())
        edges.append([src, dest, weight])
    
    minDist = [float("inf")] * (n + 1)
    minDist[1] = 0  # 起点处距离为0
    
    for i in range(1, n):
        updated = False
        for src, dest, weight in edges:
            if minDist[src] != float("inf") and minDist[src] + weight < minDist[dest]:
                minDist[dest] = minDist[src] + weight
                updated = True
        if not updated:  # 若边不再更新,即停止回圈
            break
    
    if minDist[-1] == float("inf"):  # 返还终点权重
        return "unconnected"
    return minDist[-1]
    
if __name__ == "__main__":
    print(main())
相关推荐
gsfl1 小时前
贪心算法1
算法·贪心算法
小猪咪piggy1 小时前
【算法】day8 二分查找+前缀和
算法
Word码1 小时前
[排序算法]希尔排序
c语言·数据结构·算法·排序算法
前端小刘哥1 小时前
解析视频直播点播平台EasyDSS在视频点播领域的技术架构与性能优势
算法
QT 小鲜肉2 小时前
【数据结构与算法基础】05. 栈详解(C++ 实战)
开发语言·数据结构·c++·笔记·学习·算法·学习方法
lingran__2 小时前
算法沉淀第七天(AtCoder Beginner Contest 428 和 小训练赛)
c++·算法
前端小刘哥2 小时前
新版视频直播点播平台EasyDSS,打通远程教研与教师培训新通路
算法
2401_840105202 小时前
P1049 装箱问题 题解(四种方法)附DP和DFS的对比
c++·算法·深度优先·动态规划
kobe_t2 小时前
数据安全系列7:常用的非对称算法浅析
算法
靠近彗星2 小时前
3.4特殊矩阵的压缩存储
数据结构·人工智能·算法