NNLM神经网络语言模型总结

一开始还以为很复杂,总结一下就是:

NNLM 将某个单词前 n−1 个词各自转为 embedding,拼接成一个 (n−1)⋅d 维的向量,再通过隐藏层 + 输出层 + softmax,预测下一个词的概率分布

可以发现,这个2003年提出的模型在架构上和GPT大体是没区别的,都是用之前的文字预测下一个文字;都是用之前文字的embedding经过一个特殊层(前者是FFN,后者是transformer decoder)来得到一个词表向量,根据向量的分量大小选择某个单词。

后话

当然,前者的效果差多啦,也存在不能辨别n-1个token顺序等问题。但是,还是感觉挺神奇的。

相关推荐
钟屿1 分钟前
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise论文阅读
论文阅读·图像处理·人工智能·深度学习·计算机视觉
仙人掌_lz9 分钟前
用PyTorch在超大规模下训练深度学习模型:并行策略全解析
人工智能·pytorch·深度学习
商业讯9 分钟前
深圳无人机展览即将开始,无人机舵机为什么选择伟创动力
人工智能
视觉语言导航16 分钟前
AAAI-2025 | 中科院无人机导航新突破!FELA:基于细粒度对齐的无人机视觉对话导航
人工智能·深度学习·机器人·无人机·具身智能
孚为智能科技21 分钟前
无人机箱号识别系统结合5G技术的应用实践
图像处理·人工智能·5g·目标检测·计算机视觉·视觉检测·无人机
灏瀚星空26 分钟前
地磁-惯性-视觉融合制导系统设计:现代空战导航的抗干扰解决方案
图像处理·人工智能·python·深度学习·算法·机器学习·信息与通信
Livan.Tang28 分钟前
LIO-SAM框架理解
人工智能·机器学习·slam
-曾牛35 分钟前
Spring AI 集成 Mistral AI:构建高效多语言对话助手的实战指南
java·人工智能·后端·spring·microsoft·spring ai
迅易科技1 小时前
当数控编程“联姻”AI:制造工厂的“智能大脑”如何炼成?
人工智能·ai·知识图谱·ai编程·deepseek
沫儿笙1 小时前
KUKA库卡焊接机器人智能气阀
人工智能·物联网·机器人