常见机器学习算法简介:回归、分类与聚类

机器学习说到底,不就三件事:

  1. 预测一个数 ------ 回归

  2. 判断归属哪个类 ------ 分类

  3. 自动把数据分组 ------ 聚类

别背术语,别管定义,先看问题怎么解决。


一、回归(Regression)

干嘛的?

模型输出一个连续数值。你丢个样本进去,它告诉你大概是多少。

应用场景:

  • 房价预测

  • 股票波动估计

  • 广告点击率预估

  • 医疗中的风险评分

代码风格示例:

python 复制代码
from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

注意点:

  • 特征别有太强的共线性(会影响权重估计)

  • 数据别有太多离群值(容易拉偏模型)

模型选择建议:

  • 数据线性关系明显 → 线性回归

  • 数据维度不大但噪音多 → 决策树回归

  • 数据量大 / 精度要求高 → XGBoost、LightGBM

  • 想搞深一点 / 多变量复杂依赖 → 神经网络回归(Keras / PyTorch)


二、分类(Classification)

干嘛的?

模型判断输入属于哪个"类",就像做选择题一样,A、B、C三选一。

应用场景:

  • 是否信用违约(0/1)

  • 邮件是否垃圾

  • 图像识别(猫狗车人)

  • 医疗诊断分类

代码风格示例:

python 复制代码
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

注意点:

  • 类别不均衡要处理,比如加权或采样

  • 二分类别做One-Hot?不用,直接0/1即可

  • 多分类别需换 loss(如 softmax)

模型选择建议:

  • 简单快速:逻辑回归

  • 可解释性强:决策树 / RandomForest

  • 对精度要求高:XGBoost / CatBoost

  • 有深度需求:CNN / Transformer


三、聚类(Clustering)

干嘛的?

模型自己发现数据结构,把相似的放一堆,没标签也能干。

应用场景:

  • 用户分群

  • 异常检测(异常就是被分到边角落的那类)

  • 文本聚类(比如舆情分析)

代码风格示例:

python 复制代码
from sklearn.cluster import KMeans

model = KMeans(n_clusters=3)
model.fit(X)
labels = model.labels_

注意点:

  • 特征归一化很重要(不然按维度权重大错特错)

  • K 值别瞎定,用肘部法则或者 silhouette score 找

模型选择建议:

  • 快速尝试:KMeans(80%的场景够用)

  • 空间不规则:DBSCAN

  • 层级结构:Agglomerative Clustering


工程建议(务实路线)

任务 类型 模型建议
价格预测 回归 XGBoost / LGBM
风控审核 分类 Logistic / RF / XGB
用户打标签 聚类 KMeans / DBSCAN
图片识别 分类 CNN
文本相似度分类 分类 BERT / SVM

别学偏了:

学机器学习不是看你会几个模型,而是看你知道什么时候用哪个模型,用什么数据喂进去。


下一篇我接着写《模型评估指标怎么选?怎么解释?》,这一步你要是乱选,模型再准也白搭。

相关推荐
2401_8414956437 分钟前
【机器学习】朴素贝叶斯法
人工智能·python·数学·算法·机器学习·概率论·朴素贝叶斯法
时间醉酒1 小时前
逻辑回归(四):从原理到实战-训练,评估与应用指南
人工智能·python·算法·机器学习·逻辑回归
Zheng照邻、1 小时前
VLM Prompt优化之 DynaPrompt(ICLR 2025)论文总结
人工智能·算法·语言模型·prompt·aigc
CoovallyAIHub1 小时前
机器人“大脑”遭遇认知冻结攻击!复旦等提出FreezeVLA,一张图片即可瘫痪多模态大模型
深度学习·算法·计算机视觉
无敌最俊朗@2 小时前
死锁 (Deadlock) 深度解析
算法
西阳未落2 小时前
欧拉路径与欧拉回路
算法·深度优先
Swift社区2 小时前
LeetCode 390 消除游戏
算法·leetcode·游戏
tirvideo3 小时前
RK3588芯片与板卡全面解析:旗舰级AIoT与边缘计算的核心
人工智能·嵌入式硬件·深度学习·目标检测·机器学习·计算机视觉·边缘计算
橘颂TA3 小时前
【剑斩OFFER】优雅的解法——三数之和
算法
我爱工作&工作love我3 小时前
2024-CSP-J T3 小木棍
算法·动态规划