永磁同步电机高性能控制算法(22)——基于神经网络的转矩脉动抑制算法&为什么低速时的转速波动大?

0. 前言

在之前的知乎上发过一些转矩脉动抑制/ 谐波电流抑制的算法。例如:

https://zhuanlan.zhihu.com/p/24723996895https://zhuanlan.zhihu.com/p/24723996895

这些算法基本上都需要先知道谐波的频率。

重复控制这个算法虽然可以抑制掉某个频率及其所有整数倍的谐波,但是它非常不适用于电机这种经常变速的场合。

https://zhuanlan.zhihu.com/p/2674626558https://zhuanlan.zhihu.com/p/2674626558

之前复现了一篇拿神经网络来做谐波电流抑制的------不需要知道谐波频率,把算法放上去即可抑制谐波电流。感觉出发点是非常好,但是运算量明显比传统算法大了很多,目前感觉不太能够去应用。不过呢,还得慢慢等些年发展吧,以后肯定有用的

感觉人工智能以后在电机控制上还是会有很大帮助的。

今天继续学习一篇速度环的基于神经网络的转矩脉动抑制吧(转速环PI+神经网络的)。参考文献如下:

1. 不同转速下转矩脉动的影响

为探究不同转速下,通过转矩脉动的影响,我这里给电机加上一定的齿槽转矩(我设置为基波频率的八倍,幅值1Nm),以及永磁体五七次谐波反电势产生的谐波转矩(六倍频)。

我设置参考转速分别为100RPM,600RPM以及1200RPM,下方展示了仿真中的主要波形。

从下方的仿真结果来看,对我这个仿真而已,转速高的话,转矩脉动是增大的。这是因为电机频率升高,扰动频率渐渐升高,控制效果下降。

但是呢,转速波动反而明显减小。

这是因为电机的机械系统本身就是一个低通滤波器,在输入扰动幅值相同的情况下,输入扰动的频率越高,扰动造成的影响就越小。

所以我下文验证算法的性能,只需要要在低转速下进行验证即可。

参考转速100r/min

参考转速100r/min情况下的转矩FFT分析

参考转速600r/min

参考转速600r/min情况下的转矩FFT分析

参考转速1200r/min

参考转速1200r/min情况下的转矩FFT分析

2.算法验证

对于算法内容可自行参考上面贴的论文。直接按照文中给的公式以及框图搭建,即可运行。

2.1 不同转速下的抑制效果验证

如上文所述,算法验证仅在低速段展开,设置电机参考转速分别为50RPM,100RPM,200RPM,所有仿真均在0.2s处开启转矩脉动抑制算法。

50RPM

100RPM

200RPM

从上述不同转速的转矩脉动抑制前后对比来看,该方法能够在不同转速下均有效抑制转矩脉动。虽然没有完全抑制,但是效果还是很明显的。

2.2 不同频率转矩脉动抑制

前面我把齿槽转矩设置为基波频率的8倍频,下面我修改齿槽转矩的频率,设置为4倍频。参考转速100RPM,0.3s开启转矩脉动抑制算法。

下图还展示了转矩脉动抑制前后的转速FFT分析结果,开启算法后,转速THD由原来的16.54%下降到6.28%。转速中的2、4、6、8、10、12次波动都明显下降。

抑制前的转速FFT分析

抑制后的转速FFT分析

3.总结

上述仿真结果验证了该神经网络算法在转矩脉动方面能够实现很好的效果,不需要提前预知速度波动频率,即可有效抑制大部分转速波动。

相关推荐
xingshanchang4 小时前
PyTorch 不支持旧GPU的异常状态与解决方案:CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH
人工智能·pytorch·python
reddingtons5 小时前
Adobe Firefly AI驱动设计:实用技巧与创新思维路径
大数据·人工智能·adobe·illustrator·photoshop·premiere·indesign
CertiK5 小时前
IBW 2025: CertiK首席商务官出席,探讨AI与Web3融合带来的安全挑战
人工智能·安全·web3
Deepoch6 小时前
Deepoc 大模型在无人机行业应用效果的方法
人工智能·科技·ai·语言模型·无人机
Deepoch6 小时前
Deepoc 大模型:无人机行业的智能变革引擎
人工智能·科技·算法·ai·动态规划·无人机
kngines6 小时前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题
Binary_ey6 小时前
AR衍射光波导设计遇瓶颈,OAS 光学软件来破局
人工智能·软件需求·光学软件·光波导
昵称是6硬币6 小时前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
平和男人杨争争7 小时前
机器学习2——贝叶斯理论下
人工智能·机器学习
静心问道7 小时前
XLSR-Wav2Vec2:用于语音识别的无监督跨语言表示学习
人工智能·学习·语音识别