分类预测 | Matlab实现PSO-RF粒子群算法优化随机森林多特征分类预测

分类预测 | Matlab实现PSO-RF粒子群算法优化随机森林多特征分类预测

目录

    • [分类预测 | Matlab实现PSO-RF粒子群算法优化随机森林多特征分类预测](#分类预测 | Matlab实现PSO-RF粒子群算法优化随机森林多特征分类预测)

分类效果

功能概述

  1. 数据预处理

    • 读取Excel数据集,划分训练集(前260行)和测试集(剩余行)。
    • 对输入特征进行归一化处理(范围[0,1]),保留目标变量(分类标签)不变。
    • 调整数据维度以适配模型输入(特征在列,样本在行)。
  2. 超参数优化

    • 使用PSO算法优化随机森林的两个超参数:
      • n_trees(决策树数量,范围[1,10])
      • n_layer(树深或其他层参数,范围[1,特征维度])。
    • 通过适应度函数评估超参数组合的性能(如分类错误率)。
  3. 模型训练与评估

    • 用最优超参数训练随机森林分类模型(classRF_train)。
    • 计算特征重要性,并在训练集和测试集上进行预测。
    • 统计分类准确率,绘制预测结果对比图、混淆矩阵及PSO迭代误差曲线。

算法流程

  1. 数据准备

    • 清空环境变量,读取数据集,划分训练集和测试集。
    • 归一化输入特征,调整数据维度。
  2. PSO优化

    • 初始化PSO参数(种群数=6,最大迭代=20),定义超参数搜索空间。
    • 调用PSO函数优化超参数,适应度函数fun通过训练随机森林计算分类性能(如错误率)。
  3. 模型训练

    • 根据PSO输出的最优超参数(n_treesn_layer)训练随机森林模型。
  4. 性能评估

    • 计算训练集和测试集的分类准确率。
    • 可视化结果:
      • 误差迭代曲线(反映PSO收敛过程)。
      • 真实值与预测值对比图。
      • 混淆矩阵(展示分类细节)。

相关推荐
军训猫猫头6 分钟前
1.如何对多个控件进行高效的绑定 C#例子 WPF例子
开发语言·算法·c#·.net
success19 分钟前
【爆刷力扣-数组】二分查找 及 衍生题型
算法
Orlando cron1 小时前
数据结构入门:链表
数据结构·算法·链表
牛客企业服务2 小时前
2025年AI面试推荐榜单,数字化招聘转型优选
人工智能·python·算法·面试·职场和发展·金融·求职招聘
m0_555762902 小时前
matlab 教程
matlab
糖葫芦君2 小时前
Policy Gradient【强化学习的数学原理】
算法
松果集3 小时前
MATLAB基础知识【8】绘图,peaks,sphere,积分
matlab
羊小猪~~4 小时前
【NLP入门系列五】中文文本分类案例
人工智能·深度学习·考研·机器学习·自然语言处理·分类·数据挖掘
向阳@向远方4 小时前
第二章 简单程序设计
开发语言·c++·算法
github_czy5 小时前
RRF (Reciprocal Rank Fusion) 排序算法详解
算法·排序算法