OpenCV CUDA模块图像特征检测与描述------图像中快速检测特征点类cv::cuda::FastFeatureDetector

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::cuda::FastFeatureDetector 是 OpenCV 的 CUDA 加速模块中的一部分,用于在图像中快速检测特征点。FAST(Features from Accelerated Segment Test)算法是一种高效的角点检测算法,能够在保持较高精度的同时显著提高速度。

cv::cuda::FastFeatureDetector 提供了 GPU 加速的 FAST 角点检测功能。它继承自 cv::Algorithm 类,并且实现了与 CPU 版本的 cv::FastFeatureDetector 相似的接口,但利用了 CUDA 来加速计算过程。

主要成员函数

构造函数

cpp 复制代码
  cv::cuda::FastFeatureDetector::FastFeatureDetector
  (
  	int threshold=10, 
  	bool nonmaxSuppression=true, 
  	int type=cv::FastFeatureDetector::TYPE_9_16
  )
  • threshold: 阈值,用来判断一个像素是否为角点。
  • nonmaxSuppression: 是否启用非极大值抑制来过滤掉一些不是最强响应的角点。
  • type: 指定使用的FAST类型,可以是 TYPE_9_16, TYPE_7_12, 或者 TYPE_5_8,分别对应不同的测试模式。

检测函数

cpp 复制代码
   void detect
  (
  	cv::InputArray image,
  	cv::Ptr<cv::cuda::GpuMat>& keypoints, 
  	cv::Stream& stream = cv::cuda::Stream::Null()
  )
  • image: 输入图像,通常是一个灰度图(CV_8UC1),也可以是彩色图(CV_8UC3),但会被转换为灰度图处理。
  • keypoints: 输出的关键点集合。
  • stream: 可选参数,指定CUDA流以实现异步操作。

示例代码

cpp 复制代码
#include <opencv2/cudafeatures2d.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png", cv::IMREAD_GRAYSCALE );
    if ( img.empty() )
    {
        std::cerr << "无法加载图像" << std::endl;
        return -1;
    }

    // 将图像上传到 GPU
    cv::cuda::GpuMat d_img( img );

    // 创建 FastFeatureDetector
    cv::Ptr< cv::cuda::FastFeatureDetector > detector = cv::cuda::FastFeatureDetector::create( 30 );  // 设置阈值为30

    // 检测特征点
    std::vector< cv::KeyPoint > keypoints;
    detector->detect( d_img, keypoints );

    // 绘制特征点
    cv::Mat img_keypoints;
    cv::drawKeypoints( img, keypoints, img_keypoints );

    cv::imshow( "FAST Feature Detector", img_keypoints );
    cv::waitKey( 0 );

    return 0;
}

运行结果

相关推荐
泰迪智能科技1 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102163 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧3 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)3 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了3 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好3 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能4 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案4 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记
AC赳赳老秦4 小时前
DeepSeek 私有化部署避坑指南:敏感数据本地化处理与合规性检测详解
大数据·开发语言·数据库·人工智能·自动化·php·deepseek
wm10434 小时前
机器学习之线性回归
人工智能·机器学习·线性回归