OpenCV CUDA模块图像特征检测与描述------图像中快速检测特征点类cv::cuda::FastFeatureDetector

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::cuda::FastFeatureDetector 是 OpenCV 的 CUDA 加速模块中的一部分,用于在图像中快速检测特征点。FAST(Features from Accelerated Segment Test)算法是一种高效的角点检测算法,能够在保持较高精度的同时显著提高速度。

cv::cuda::FastFeatureDetector 提供了 GPU 加速的 FAST 角点检测功能。它继承自 cv::Algorithm 类,并且实现了与 CPU 版本的 cv::FastFeatureDetector 相似的接口,但利用了 CUDA 来加速计算过程。

主要成员函数

构造函数

cpp 复制代码
  cv::cuda::FastFeatureDetector::FastFeatureDetector
  (
  	int threshold=10, 
  	bool nonmaxSuppression=true, 
  	int type=cv::FastFeatureDetector::TYPE_9_16
  )
  • threshold: 阈值,用来判断一个像素是否为角点。
  • nonmaxSuppression: 是否启用非极大值抑制来过滤掉一些不是最强响应的角点。
  • type: 指定使用的FAST类型,可以是 TYPE_9_16, TYPE_7_12, 或者 TYPE_5_8,分别对应不同的测试模式。

检测函数

cpp 复制代码
   void detect
  (
  	cv::InputArray image,
  	cv::Ptr<cv::cuda::GpuMat>& keypoints, 
  	cv::Stream& stream = cv::cuda::Stream::Null()
  )
  • image: 输入图像,通常是一个灰度图(CV_8UC1),也可以是彩色图(CV_8UC3),但会被转换为灰度图处理。
  • keypoints: 输出的关键点集合。
  • stream: 可选参数,指定CUDA流以实现异步操作。

示例代码

cpp 复制代码
#include <opencv2/cudafeatures2d.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png", cv::IMREAD_GRAYSCALE );
    if ( img.empty() )
    {
        std::cerr << "无法加载图像" << std::endl;
        return -1;
    }

    // 将图像上传到 GPU
    cv::cuda::GpuMat d_img( img );

    // 创建 FastFeatureDetector
    cv::Ptr< cv::cuda::FastFeatureDetector > detector = cv::cuda::FastFeatureDetector::create( 30 );  // 设置阈值为30

    // 检测特征点
    std::vector< cv::KeyPoint > keypoints;
    detector->detect( d_img, keypoints );

    // 绘制特征点
    cv::Mat img_keypoints;
    cv::drawKeypoints( img, keypoints, img_keypoints );

    cv::imshow( "FAST Feature Detector", img_keypoints );
    cv::waitKey( 0 );

    return 0;
}

运行结果

相关推荐
石臻臻的杂货铺24 分钟前
微软宣布的五大重要事项|AI日报0520
人工智能·microsoft
中烟创新1 小时前
安全可控的AI底座:灯塔大模型应用开发平台全面实现国产信创兼容适配认证
人工智能·安全
兔兔爱学习兔兔爱学习2 小时前
创建Workforce
人工智能·算法
louisliao_19812 小时前
钉钉开发之AI消息和卡片交互开发文档收集
人工智能·钉钉
橙子小哥的代码世界2 小时前
GPT 等decoder系列常见的下游任务
人工智能·gpt·nlp·解释器模式·transformer
KY_chenzhao2 小时前
AI赋能R-Meta分析核心技术:从热点挖掘到高级模型
人工智能·r语言·论文·生态·meta分析·热点
BIYing_Aurora3 小时前
【IPMV】图像处理与机器视觉:Lec10 Edges and Lines
图像处理·人工智能·经验分享·线性代数·计算机视觉·视觉检测
通义灵码3 小时前
如何使用AI辅助开发R语言
ide·人工智能·vscode·通义灵码
Tech Synapse3 小时前
端到端自动驾驶系统实战指南:从Comma.ai架构到PyTorch部署
人工智能·pytorch·自动驾驶·carla·end-to-end
珂朵莉MM3 小时前
2023 睿抗机器人开发者大赛CAIP-编程技能赛-本科组(国赛) 解题报告 | 珂学家
人工智能·算法·职场和发展·深度优先·图论