OpenCV CUDA模块图像特征检测与描述------图像中快速检测特征点类cv::cuda::FastFeatureDetector

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::cuda::FastFeatureDetector 是 OpenCV 的 CUDA 加速模块中的一部分,用于在图像中快速检测特征点。FAST(Features from Accelerated Segment Test)算法是一种高效的角点检测算法,能够在保持较高精度的同时显著提高速度。

cv::cuda::FastFeatureDetector 提供了 GPU 加速的 FAST 角点检测功能。它继承自 cv::Algorithm 类,并且实现了与 CPU 版本的 cv::FastFeatureDetector 相似的接口,但利用了 CUDA 来加速计算过程。

主要成员函数

构造函数

cpp 复制代码
  cv::cuda::FastFeatureDetector::FastFeatureDetector
  (
  	int threshold=10, 
  	bool nonmaxSuppression=true, 
  	int type=cv::FastFeatureDetector::TYPE_9_16
  )
  • threshold: 阈值,用来判断一个像素是否为角点。
  • nonmaxSuppression: 是否启用非极大值抑制来过滤掉一些不是最强响应的角点。
  • type: 指定使用的FAST类型,可以是 TYPE_9_16, TYPE_7_12, 或者 TYPE_5_8,分别对应不同的测试模式。

检测函数

cpp 复制代码
   void detect
  (
  	cv::InputArray image,
  	cv::Ptr<cv::cuda::GpuMat>& keypoints, 
  	cv::Stream& stream = cv::cuda::Stream::Null()
  )
  • image: 输入图像,通常是一个灰度图(CV_8UC1),也可以是彩色图(CV_8UC3),但会被转换为灰度图处理。
  • keypoints: 输出的关键点集合。
  • stream: 可选参数,指定CUDA流以实现异步操作。

示例代码

cpp 复制代码
#include <opencv2/cudafeatures2d.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png", cv::IMREAD_GRAYSCALE );
    if ( img.empty() )
    {
        std::cerr << "无法加载图像" << std::endl;
        return -1;
    }

    // 将图像上传到 GPU
    cv::cuda::GpuMat d_img( img );

    // 创建 FastFeatureDetector
    cv::Ptr< cv::cuda::FastFeatureDetector > detector = cv::cuda::FastFeatureDetector::create( 30 );  // 设置阈值为30

    // 检测特征点
    std::vector< cv::KeyPoint > keypoints;
    detector->detect( d_img, keypoints );

    // 绘制特征点
    cv::Mat img_keypoints;
    cv::drawKeypoints( img, keypoints, img_keypoints );

    cv::imshow( "FAST Feature Detector", img_keypoints );
    cv::waitKey( 0 );

    return 0;
}

运行结果

相关推荐
Theodore_10229 小时前
深度学习(9)导数与计算图
人工智能·深度学习·机器学习·矩阵·线性回归
PPIO派欧云10 小时前
PPIO上新GPU实例模板,一键部署PaddleOCR-VL
人工智能
TGITCIC11 小时前
金融RAG落地之痛:不在模型,而在数据结构
人工智能·ai大模型·ai agent·ai智能体·开源大模型·金融ai·金融rag
chenzhiyuan201815 小时前
《十五五规划》下的AI边缘计算机遇:算力下沉与工业智能化
人工智能·边缘计算
whaosoft-14315 小时前
51c深度学习~合集11
人工智能
Tiandaren15 小时前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
领航猿1号16 小时前
Pytorch 内存布局优化:Contiguous Memory
人工智能·pytorch·深度学习·机器学习
综合热讯16 小时前
宠智灵宠物识别AI:从犬猫到鸟鱼的全生态智能识别
人工智能·宠物
zskj_zhyl16 小时前
智慧康养新篇章:七彩喜如何重塑老年生活的温度与尊严
大数据·人工智能·科技·物联网·生活
永霖光电_UVLED17 小时前
IVWorks率先将8英寸GaN纳米线片商业化
人工智能·神经网络·生成对抗网络