【工具】grcMalaria用于处理和分析“斑点疟疾基因报告卡”的R软件包

文章目录

介绍

grcMalaria 是一个易于使用的、开源的 R 软件包,旨在使遗传流行病学分析任务变得易于操作。

该软件包能够将来自"SpotMalaria 遗传报告卡"(GRC)中提取的疟原虫遗传信息转化为直观的流行率、多样性、亲缘关系等地理图谱。该软件库还能够识别流行毒株、分析药物耐药性特征以及绘制传播路径。

grcMalaria is a user-friendly, open-source R package, designed to make genetic epidemiology analysis tasks accessible.
The package facilitates the translation of genetic information derived from malaria parasites from SpotMalaria Genetic Report Cards (GRC) into intuitive geographical maps of prevalence, diversity, relatedness. This software library is also capable of identifying circulating strains, characterising drug resistance profiles, and mapping spread.

代码

https://genremekong.org/tools/grcmalaria-guide

r 复制代码
## Install devtools and rgeos
install.packages("devtools")
install.packages("rgeos")

##Install grcMalariaGeodata from Github
devtools::install_github("malariagen/grcMalariaGeodata")

## Require these dependencies to install 'malariagen/grcMalaria'
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install("pcaMethods")

# Load libraries
library(grcMalariaGeodata)
library(grcMalaria)

# Check package versions grcMalaria and grcMalariaGeodata
# Latest version grcMalariaGeodata: 0.4.0
# Latest stable version of grcMalaria: 2.0.0
packageVersion('grcMalaria')
packageVersion('grcMalariaGeodata')


# Load data file
# Change the path to where your file is located before running the code
Data <- loadGrc("D:/.../GRC.xlsx", 
    sheet = "GenRe-Mekong", 
    species = "Pf", version = "1.4")

ctx <- initializeContext(Data, 
                          dir="D:/...", #Change the path to where you want output file to be 
															 minSnpTypability=0.8, minSampleTypability=0.75) 


## Select sample set to work on. 

# To select samples from 1 field (1 column in the GRC)
selectSampleSet(ctx, sampleSetName="EBKK", select=list(
								list(field="Country", values=c("VN", "KH", "LA")) ))

# To select samples from 2 fields
selectSampleSet(ctx, sampleSetName="Laos", select=list(
								list(field="TimePoint", values=c("D00H00","-")),
								list(field="Study", values=c("1208-PF-LA-CMPE-GENRE")) ))

# To select samples from 3 fields
selectSampleSet(ctx, sampleSetName="SouthLA_2017", select=list(
                 list(field="Country", values="LA"),
                 list(field="AdmDiv1", values=c("Attapeu", "Champasak")),
								 list(field="Year", values=c("2017", "2018")) ))

# To select samples from more fields, follow the example above to add more -> list(field=" ", values = " ")


mapSampleCounts (ctx, sampleSet="EBKK", timePeriods=NULL,
                   aggregate=c("Province","District"), 
                   minAggregateCount=1, 
                   markerSize=c(10,40), 
                   colourBy="Province", 
                   showNames=TRUE,
                   ...)
r 复制代码
mapDrugResistancePrevalence (ctx, sampleSet="EBKK", timePeriods=NULL,
                   drugs="ALL", aggregate=c("Province","District"),
                   minAggregateCount=10, showNames=TRUE, markerSize=16,
                   ...)

参考

相关推荐
DataGear9 小时前
如何在DataGear 5.4.1 中快速制作SQL服务端分页的数据表格看板
javascript·数据库·sql·信息可视化·数据分析·echarts·数据可视化
王小王-12311 小时前
基于Hadoop的京东厨具商品数据分析及商品价格预测系统的设计与实现
hadoop·数据分析·京东厨具·厨具分析·商品分析
可观测性用观测云12 小时前
Cloudflare 日志采集和分析最佳实践
数据分析
真智AI13 小时前
AI智能体时代来临:数据分析的变革与自动化之路
人工智能·数据分析·自动化
shootero@126.com14 小时前
R语言开发记录,二(创建R包)
r语言
程序员阿超的博客14 小时前
Python 数据分析与机器学习入门 (五):Matplotlib 数据可视化基础
python·信息可视化·数据分析·matplotlib·数据可视化·python教程·pyplot
顾道长生'15 小时前
(Arxiv-2024)自回归模型优于扩散:Llama用于可扩展的图像生成
计算机视觉·数据挖掘·llama·自回归模型·多模态生成与理解
蓝婷儿20 小时前
Python 数据分析与可视化 Day 14 - 建模复盘 + 多模型评估对比(逻辑回归 vs 决策树)
python·数据分析·逻辑回归
shootero@126.com21 小时前
R语言开发记录,一
开发语言·r语言
旷世奇才李先生21 小时前
R 语言安装使用教程
开发语言·r语言