【工具】grcMalaria用于处理和分析“斑点疟疾基因报告卡”的R软件包

文章目录

介绍

grcMalaria 是一个易于使用的、开源的 R 软件包,旨在使遗传流行病学分析任务变得易于操作。

该软件包能够将来自"SpotMalaria 遗传报告卡"(GRC)中提取的疟原虫遗传信息转化为直观的流行率、多样性、亲缘关系等地理图谱。该软件库还能够识别流行毒株、分析药物耐药性特征以及绘制传播路径。

grcMalaria is a user-friendly, open-source R package, designed to make genetic epidemiology analysis tasks accessible.
The package facilitates the translation of genetic information derived from malaria parasites from SpotMalaria Genetic Report Cards (GRC) into intuitive geographical maps of prevalence, diversity, relatedness. This software library is also capable of identifying circulating strains, characterising drug resistance profiles, and mapping spread.

代码

https://genremekong.org/tools/grcmalaria-guide

r 复制代码
## Install devtools and rgeos
install.packages("devtools")
install.packages("rgeos")

##Install grcMalariaGeodata from Github
devtools::install_github("malariagen/grcMalariaGeodata")

## Require these dependencies to install 'malariagen/grcMalaria'
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install("pcaMethods")

# Load libraries
library(grcMalariaGeodata)
library(grcMalaria)

# Check package versions grcMalaria and grcMalariaGeodata
# Latest version grcMalariaGeodata: 0.4.0
# Latest stable version of grcMalaria: 2.0.0
packageVersion('grcMalaria')
packageVersion('grcMalariaGeodata')


# Load data file
# Change the path to where your file is located before running the code
Data <- loadGrc("D:/.../GRC.xlsx", 
    sheet = "GenRe-Mekong", 
    species = "Pf", version = "1.4")

ctx <- initializeContext(Data, 
                          dir="D:/...", #Change the path to where you want output file to be 
															 minSnpTypability=0.8, minSampleTypability=0.75) 


## Select sample set to work on. 

# To select samples from 1 field (1 column in the GRC)
selectSampleSet(ctx, sampleSetName="EBKK", select=list(
								list(field="Country", values=c("VN", "KH", "LA")) ))

# To select samples from 2 fields
selectSampleSet(ctx, sampleSetName="Laos", select=list(
								list(field="TimePoint", values=c("D00H00","-")),
								list(field="Study", values=c("1208-PF-LA-CMPE-GENRE")) ))

# To select samples from 3 fields
selectSampleSet(ctx, sampleSetName="SouthLA_2017", select=list(
                 list(field="Country", values="LA"),
                 list(field="AdmDiv1", values=c("Attapeu", "Champasak")),
								 list(field="Year", values=c("2017", "2018")) ))

# To select samples from more fields, follow the example above to add more -> list(field=" ", values = " ")


mapSampleCounts (ctx, sampleSet="EBKK", timePeriods=NULL,
                   aggregate=c("Province","District"), 
                   minAggregateCount=1, 
                   markerSize=c(10,40), 
                   colourBy="Province", 
                   showNames=TRUE,
                   ...)
r 复制代码
mapDrugResistancePrevalence (ctx, sampleSet="EBKK", timePeriods=NULL,
                   drugs="ALL", aggregate=c("Province","District"),
                   minAggregateCount=10, showNames=TRUE, markerSize=16,
                   ...)

参考

相关推荐
_codemonster1 天前
AI大模型入门到实战系列(八)文本聚类
人工智能·数据挖掘·聚类
数据科学项目实践1 天前
建模步骤 3 :数据探索(EDA) — 1、初步了解数据:常用函数
人工智能·python·机器学习·数据挖掘·数据分析·pandas·数据可视化
测试人社区-千羽1 天前
生物识别系统的测试安全性与漏洞防护实践
运维·人工智能·opencv·安全·数据挖掘·自动化·边缘计算
大数据魔法师1 天前
昆明天气数据分析与挖掘(二)- 昆明天气数据预处理
数据分析
艾上编程1 天前
第二章——数据分析场景之用Python进行CSV/Excel数据清洗:为数据分析筑牢根基
python·数据分析·excel
AI小云1 天前
【数据操作与可视化】Serborn绘图-类别散点图和热力图
python·数据可视化
睿航马克西姆1 天前
350年飞行梦想的新突破:人类与AI共同挑战大气压力极限
数据挖掘
Python极客之家1 天前
基于Django的高校二手市场与社交系统
后端·python·数据挖掘·django·毕业设计
艾上编程1 天前
第二章——数据分析场景之Python数据可视化:用Matplotlib与Seaborn绘制洞察之图
python·信息可视化·数据分析
databook1 天前
数据点的“社交距离”:衡量它们之间的相似与差异
python·数据挖掘·数据分析