【工具】grcMalaria用于处理和分析“斑点疟疾基因报告卡”的R软件包

文章目录

介绍

grcMalaria 是一个易于使用的、开源的 R 软件包,旨在使遗传流行病学分析任务变得易于操作。

该软件包能够将来自"SpotMalaria 遗传报告卡"(GRC)中提取的疟原虫遗传信息转化为直观的流行率、多样性、亲缘关系等地理图谱。该软件库还能够识别流行毒株、分析药物耐药性特征以及绘制传播路径。

grcMalaria is a user-friendly, open-source R package, designed to make genetic epidemiology analysis tasks accessible.
The package facilitates the translation of genetic information derived from malaria parasites from SpotMalaria Genetic Report Cards (GRC) into intuitive geographical maps of prevalence, diversity, relatedness. This software library is also capable of identifying circulating strains, characterising drug resistance profiles, and mapping spread.

代码

https://genremekong.org/tools/grcmalaria-guide

r 复制代码
## Install devtools and rgeos
install.packages("devtools")
install.packages("rgeos")

##Install grcMalariaGeodata from Github
devtools::install_github("malariagen/grcMalariaGeodata")

## Require these dependencies to install 'malariagen/grcMalaria'
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install("pcaMethods")

# Load libraries
library(grcMalariaGeodata)
library(grcMalaria)

# Check package versions grcMalaria and grcMalariaGeodata
# Latest version grcMalariaGeodata: 0.4.0
# Latest stable version of grcMalaria: 2.0.0
packageVersion('grcMalaria')
packageVersion('grcMalariaGeodata')


# Load data file
# Change the path to where your file is located before running the code
Data <- loadGrc("D:/.../GRC.xlsx", 
    sheet = "GenRe-Mekong", 
    species = "Pf", version = "1.4")

ctx <- initializeContext(Data, 
                          dir="D:/...", #Change the path to where you want output file to be 
															 minSnpTypability=0.8, minSampleTypability=0.75) 


## Select sample set to work on. 

# To select samples from 1 field (1 column in the GRC)
selectSampleSet(ctx, sampleSetName="EBKK", select=list(
								list(field="Country", values=c("VN", "KH", "LA")) ))

# To select samples from 2 fields
selectSampleSet(ctx, sampleSetName="Laos", select=list(
								list(field="TimePoint", values=c("D00H00","-")),
								list(field="Study", values=c("1208-PF-LA-CMPE-GENRE")) ))

# To select samples from 3 fields
selectSampleSet(ctx, sampleSetName="SouthLA_2017", select=list(
                 list(field="Country", values="LA"),
                 list(field="AdmDiv1", values=c("Attapeu", "Champasak")),
								 list(field="Year", values=c("2017", "2018")) ))

# To select samples from more fields, follow the example above to add more -> list(field=" ", values = " ")


mapSampleCounts (ctx, sampleSet="EBKK", timePeriods=NULL,
                   aggregate=c("Province","District"), 
                   minAggregateCount=1, 
                   markerSize=c(10,40), 
                   colourBy="Province", 
                   showNames=TRUE,
                   ...)
r 复制代码
mapDrugResistancePrevalence (ctx, sampleSet="EBKK", timePeriods=NULL,
                   drugs="ALL", aggregate=c("Province","District"),
                   minAggregateCount=10, showNames=TRUE, markerSize=16,
                   ...)

参考

相关推荐
大数据CLUB5 小时前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
智数研析社7 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
qingyunliushuiyu9 小时前
BI数据可视化:驱动数据价值释放的关键引擎
数据挖掘·数据分析·数据分析系统·数据分析平台·bi数据可视化
CodeCraft Studio9 小时前
【案例分享】TeeChart 助力 Softdrill 提升油气钻井数据可视化能力
信息可视化·数据可视化·teechart·油气钻井·石油勘探数据·测井数据
折翼的恶魔11 小时前
数据分析:排序
python·数据分析·pandas
lssjzmn12 小时前
基于Spring Boot与Micrometer的系统参数监控指南
java·spring boot·数据可视化
HenrySmale13 小时前
05 回归问题和分类问题
分类·数据挖掘·回归
数据牧羊人的成长笔记16 小时前
数据分析需要掌握的数学知识(易理解)
数学建模·数据分析
victory043116 小时前
wav2vec微调进行疾病语音分类任务
人工智能·分类·数据挖掘
折翼的恶魔17 小时前
数据分析:合并二
python·数据分析·pandas