【工具】grcMalaria用于处理和分析“斑点疟疾基因报告卡”的R软件包

文章目录

介绍

grcMalaria 是一个易于使用的、开源的 R 软件包,旨在使遗传流行病学分析任务变得易于操作。

该软件包能够将来自"SpotMalaria 遗传报告卡"(GRC)中提取的疟原虫遗传信息转化为直观的流行率、多样性、亲缘关系等地理图谱。该软件库还能够识别流行毒株、分析药物耐药性特征以及绘制传播路径。

grcMalaria is a user-friendly, open-source R package, designed to make genetic epidemiology analysis tasks accessible.
The package facilitates the translation of genetic information derived from malaria parasites from SpotMalaria Genetic Report Cards (GRC) into intuitive geographical maps of prevalence, diversity, relatedness. This software library is also capable of identifying circulating strains, characterising drug resistance profiles, and mapping spread.

代码

https://genremekong.org/tools/grcmalaria-guide

r 复制代码
## Install devtools and rgeos
install.packages("devtools")
install.packages("rgeos")

##Install grcMalariaGeodata from Github
devtools::install_github("malariagen/grcMalariaGeodata")

## Require these dependencies to install 'malariagen/grcMalaria'
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install("pcaMethods")

# Load libraries
library(grcMalariaGeodata)
library(grcMalaria)

# Check package versions grcMalaria and grcMalariaGeodata
# Latest version grcMalariaGeodata: 0.4.0
# Latest stable version of grcMalaria: 2.0.0
packageVersion('grcMalaria')
packageVersion('grcMalariaGeodata')


# Load data file
# Change the path to where your file is located before running the code
Data <- loadGrc("D:/.../GRC.xlsx", 
    sheet = "GenRe-Mekong", 
    species = "Pf", version = "1.4")

ctx <- initializeContext(Data, 
                          dir="D:/...", #Change the path to where you want output file to be 
															 minSnpTypability=0.8, minSampleTypability=0.75) 


## Select sample set to work on. 

# To select samples from 1 field (1 column in the GRC)
selectSampleSet(ctx, sampleSetName="EBKK", select=list(
								list(field="Country", values=c("VN", "KH", "LA")) ))

# To select samples from 2 fields
selectSampleSet(ctx, sampleSetName="Laos", select=list(
								list(field="TimePoint", values=c("D00H00","-")),
								list(field="Study", values=c("1208-PF-LA-CMPE-GENRE")) ))

# To select samples from 3 fields
selectSampleSet(ctx, sampleSetName="SouthLA_2017", select=list(
                 list(field="Country", values="LA"),
                 list(field="AdmDiv1", values=c("Attapeu", "Champasak")),
								 list(field="Year", values=c("2017", "2018")) ))

# To select samples from more fields, follow the example above to add more -> list(field=" ", values = " ")


mapSampleCounts (ctx, sampleSet="EBKK", timePeriods=NULL,
                   aggregate=c("Province","District"), 
                   minAggregateCount=1, 
                   markerSize=c(10,40), 
                   colourBy="Province", 
                   showNames=TRUE,
                   ...)
r 复制代码
mapDrugResistancePrevalence (ctx, sampleSet="EBKK", timePeriods=NULL,
                   drugs="ALL", aggregate=c("Province","District"),
                   minAggregateCount=10, showNames=TRUE, markerSize=16,
                   ...)

参考

相关推荐
数据智能老司机5 分钟前
构建 Medallion 架构——数据架构的演进
大数据·架构·数据分析
数据智能老司机6 分钟前
构建 Medallion 架构——深入解读Medallion架构
大数据·架构·数据分析
兮兮能吃能睡18 分钟前
资料片:R语言中常见的英文术语及其含义
开发语言·r语言
我要学习别拦我~3 小时前
气泡图 vs 散点图:什么时候加第三维?
信息可视化·数据可视化
千桐科技4 小时前
qData 数据中台:全面支持 ARM 架构与信创国产化环境的兼容性说明
大数据·数据可视化
Blossom.1184 小时前
把AI“浓缩”到1KB:超紧凑型决策树在MCU上的极限优化实战
人工智能·python·单片机·深度学习·决策树·机器学习·数据挖掘
HZZD_HZZD5 小时前
智慧能源平台:驱动能源革新的核心数字引擎
数据分析·能源
蒋星熠5 小时前
基于深度学习的卫星图像分类(Kaggle比赛实战)
人工智能·python·深度学习·机器学习·分类·数据挖掘
绵羊202317 小时前
R语言绘制热图
开发语言·r语言
做科研的周师兄20 小时前
【机器学习入门】7.4 随机森林:一文吃透随机森林——从原理到核心特点
人工智能·学习·算法·随机森林·机器学习·支持向量机·数据挖掘