线性代数基础

目录

线性代数基础

一、矩阵

(一)矩阵的基本运算

(二)矩阵的性质

二、n维向量与向量空间

三、线性方程组

(一)解的情况

(二)求解方法

四、矩阵的特征值与二次型


一、矩阵

矩阵是一个矩形阵列,由数字、符号或表达式排列而成,用于表示线性变换、方程组等。

(一)矩阵的基本运算

  1. 加法与减法:同型矩阵才能相加减,操作为对应位置元素相加减。

  2. 数乘:矩阵的每个元素分别乘以常数。

  3. 乘法:矩阵相乘需前矩阵列数等于后矩阵行数,结果矩阵行数为前矩阵行数,列数为后矩阵列数。

(二)矩阵的性质

  1. 转置 :将矩阵的行列互换,

  2. 行列式:仅定义于方阵,反映矩阵缩放因子。

  3. :矩阵线性无关的行数或列数。

二、n维向量与向量空间

n维向量是n个实数的有序数组,用于表示几何向量或多维数据。

向量空间是一个向量集合,对加法和数乘封闭,需满足以下公理:

  1. 封闭性:向量相加和数乘仍在空间内。

  2. 零向量存在性:存在零向量使任意向量加零向量不变。

  3. 逆向量存在性:每个向量都有逆向量,相加为零向量。

  4. 线性组合与基:向量空间的基是一组线性无关向量,可表示空间中所有向量。

三、线性方程组

线性方程组由多个线性方程组成,用于求解多个变量的值。

矩阵形式为 Ax=b,其中A是系数矩阵,x是变量向量,b是常数项向量。

(一)解的情况

(二)求解方法

  1. 高斯消元法:通过初等行变换将矩阵化为阶梯形,回代求解。

  2. 矩阵求逆法:当A可逆时,x=A−1b。

  3. 克莱姆法则:适用于方程个数与变量个数相同的线性方程组。

四、矩阵的特征值与二次型

矩阵的特征值和特征向量用于分析矩阵的性质和行为。

设A是n阶方阵,若存在标量λ和非零向量x,使得 Ax=λx,则λ是A的特征值,x是对应的特征向量。

二次型是一个二次多项式,表示为,其中A是对称矩阵,x是n维向量。

通过正交变换将二次型化为标准形,形式为 ​,其中λi​是矩阵A的特征值。

相关推荐
一直都在57212 小时前
数据结构入门:二叉排序树的构建与相关算法
数据结构·算法
weixin_3954489112 小时前
迁移后的主要升级点(TDA4 相对 TDA2)
人工智能·深度学习·机器学习
_Minato_12 小时前
数据结构知识整理——复杂度的计算
数据结构·经验分享·笔记·算法·软考
listhi52012 小时前
针对燃油运输和车辆调度问题的蚁群算法MATLAB实现
前端·算法·matlab
光锥智能12 小时前
罗福莉首秀,雷军的AI新战事
人工智能·深度学习·机器学习
高锰酸钾_12 小时前
机器学习-线性回归详解
人工智能·机器学习·线性回归
月明长歌12 小时前
【码道初阶】【LeetCode 102】二叉树层序遍历:如何利用队列实现“一层一层切蛋糕”?
java·数据结构·算法·leetcode·职场和发展·队列
lisw0512 小时前
人工智能伦理的演进对科技政策有何影响?
人工智能·科技·机器学习
心疼你的一切12 小时前
使用Transformer构建文本分类器
人工智能·深度学习·神经网络·机器学习·transformer
星诺算法备案13 小时前
读懂大模型备案流程,开启技术安全应用新征程
人工智能·算法·推荐算法·备案