线性代数基础

目录

线性代数基础

一、矩阵

(一)矩阵的基本运算

(二)矩阵的性质

二、n维向量与向量空间

三、线性方程组

(一)解的情况

(二)求解方法

四、矩阵的特征值与二次型


一、矩阵

矩阵是一个矩形阵列,由数字、符号或表达式排列而成,用于表示线性变换、方程组等。

(一)矩阵的基本运算

  1. 加法与减法:同型矩阵才能相加减,操作为对应位置元素相加减。

  2. 数乘:矩阵的每个元素分别乘以常数。

  3. 乘法:矩阵相乘需前矩阵列数等于后矩阵行数,结果矩阵行数为前矩阵行数,列数为后矩阵列数。

(二)矩阵的性质

  1. 转置 :将矩阵的行列互换,

  2. 行列式:仅定义于方阵,反映矩阵缩放因子。

  3. :矩阵线性无关的行数或列数。

二、n维向量与向量空间

n维向量是n个实数的有序数组,用于表示几何向量或多维数据。

向量空间是一个向量集合,对加法和数乘封闭,需满足以下公理:

  1. 封闭性:向量相加和数乘仍在空间内。

  2. 零向量存在性:存在零向量使任意向量加零向量不变。

  3. 逆向量存在性:每个向量都有逆向量,相加为零向量。

  4. 线性组合与基:向量空间的基是一组线性无关向量,可表示空间中所有向量。

三、线性方程组

线性方程组由多个线性方程组成,用于求解多个变量的值。

矩阵形式为 Ax=b,其中A是系数矩阵,x是变量向量,b是常数项向量。

(一)解的情况

(二)求解方法

  1. 高斯消元法:通过初等行变换将矩阵化为阶梯形,回代求解。

  2. 矩阵求逆法:当A可逆时,x=A−1b。

  3. 克莱姆法则:适用于方程个数与变量个数相同的线性方程组。

四、矩阵的特征值与二次型

矩阵的特征值和特征向量用于分析矩阵的性质和行为。

设A是n阶方阵,若存在标量λ和非零向量x,使得 Ax=λx,则λ是A的特征值,x是对应的特征向量。

二次型是一个二次多项式,表示为,其中A是对称矩阵,x是n维向量。

通过正交变换将二次型化为标准形,形式为 ​,其中λi​是矩阵A的特征值。

相关推荐
Georgewu5 小时前
【AI大模型入门指南】提示词Prompt工程详解
算法·aigc·ai编程
ZackSock11 小时前
Policy Gradient 极简教程
算法
Big_Yellow_J12 小时前
深入浅出了解生成模型-3:Diffusion模型原理以及代码
算法·面试
ZackSock13 小时前
从零实现 RAG
算法
Jolyne_13 小时前
前端常用的树处理方法总结
前端·算法·面试
前端付豪15 小时前
微信视频号推荐系统揭秘:兴趣建模、多模态分析与亿级流控架构实战
前端·后端·算法
木杉苑15 小时前
快速幂算法
算法
Blossom.11817 小时前
基于深度学习的智能图像增强技术:原理、实现与应用
人工智能·python·深度学习·神经网络·机器学习·tensorflow·sklearn
-qOVOp-18 小时前
408第一季 - 数据结构 - 排序II
数据结构·算法·排序算法
小胖同学~18 小时前
快速入门数据结构--栈
算法