线性代数基础

目录

线性代数基础

一、矩阵

(一)矩阵的基本运算

(二)矩阵的性质

二、n维向量与向量空间

三、线性方程组

(一)解的情况

(二)求解方法

四、矩阵的特征值与二次型


一、矩阵

矩阵是一个矩形阵列,由数字、符号或表达式排列而成,用于表示线性变换、方程组等。

(一)矩阵的基本运算

  1. 加法与减法:同型矩阵才能相加减,操作为对应位置元素相加减。

  2. 数乘:矩阵的每个元素分别乘以常数。

  3. 乘法:矩阵相乘需前矩阵列数等于后矩阵行数,结果矩阵行数为前矩阵行数,列数为后矩阵列数。

(二)矩阵的性质

  1. 转置 :将矩阵的行列互换,

  2. 行列式:仅定义于方阵,反映矩阵缩放因子。

  3. :矩阵线性无关的行数或列数。

二、n维向量与向量空间

n维向量是n个实数的有序数组,用于表示几何向量或多维数据。

向量空间是一个向量集合,对加法和数乘封闭,需满足以下公理:

  1. 封闭性:向量相加和数乘仍在空间内。

  2. 零向量存在性:存在零向量使任意向量加零向量不变。

  3. 逆向量存在性:每个向量都有逆向量,相加为零向量。

  4. 线性组合与基:向量空间的基是一组线性无关向量,可表示空间中所有向量。

三、线性方程组

线性方程组由多个线性方程组成,用于求解多个变量的值。

矩阵形式为 Ax=b,其中A是系数矩阵,x是变量向量,b是常数项向量。

(一)解的情况

(二)求解方法

  1. 高斯消元法:通过初等行变换将矩阵化为阶梯形,回代求解。

  2. 矩阵求逆法:当A可逆时,x=A−1b。

  3. 克莱姆法则:适用于方程个数与变量个数相同的线性方程组。

四、矩阵的特征值与二次型

矩阵的特征值和特征向量用于分析矩阵的性质和行为。

设A是n阶方阵,若存在标量λ和非零向量x,使得 Ax=λx,则λ是A的特征值,x是对应的特征向量。

二次型是一个二次多项式,表示为,其中A是对称矩阵,x是n维向量。

通过正交变换将二次型化为标准形,形式为 ​,其中λi​是矩阵A的特征值。

相关推荐
聚客AI13 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v15 小时前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工17 小时前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农18 小时前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了19 小时前
AcWing学习——双指针算法
c++·算法
moonlifesudo19 小时前
322:零钱兑换(三种方法)
算法
NAGNIP2 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队2 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
AI小云2 天前
【机器学习与实战】回归分析与预测:线性回归-03-损失函数与梯度下降
机器学习
Fanxt_Ja2 天前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表