推荐系统里真的存在“反馈循环”吗?

推荐系统里真的存在"反馈循环"吗?

许多人说,推荐算法不过是把用户早已存在的兴趣挖掘出来,你本来就爱听流行歌、买潮牌玩具,系统只是在合适的时间把它们端到你面前,再怎么迭代,算法也改变不了人的天性,反馈循环像是研究者们的学术噱头。

我第一次认真思考这个问题的时候,是为了搞清楚推荐系统里的偏差放大(Bias Amplification)效应。

何向南的这个图示强调了推荐系统的偏差(曝光偏差、流行度偏差等)会在后续迭代中被连锁放大,最终表现为热门更热门、冷门愈冷门的马太效应,或其他不公平问题。

若不打破偏差的循环放大机制,推荐系统的性能就会持续恶化。

不少研究都认识到,在推荐服务阶段通过强化学习平衡探索与利用,以避免流行度偏差过度积累。

"试错"是强化学习探索与利用权衡中的一个核心理念,描述了推荐系统与用户进行交互并迭代更新策略的过程。

试错时,推荐策略会进行探索性的推荐,根据用户反馈来评判探索效果。随着时间的推移,探索行为能够试验出哪些项目能给带来更高的用户满意度,作为推荐策略更新的依据。

这是强化推荐算法与传统推荐算法相比的主要优势之一,它考虑到了推荐问题的交互性。

我们可以提炼出,在试错过程中,用户和推荐模型之间存在着一个反馈循环(Feedback Loop)。还是用何向南的图例来说明,推荐系统中的反馈循环包括三个阶段。

  • 从用户到数据集。这一阶段系统收集用户与推荐系统的交互数据,例如点击行为、用户对项目的评分等等。
  • 从数据集到推荐系统。这一阶段基于收集到的交互数据,从用户的交互历史中提炼用户偏好,然后学习推荐策略用来根据偏好预测用户可能采用的项目。
  • 从推荐系统到用户。这一阶段推荐策略会将推荐结果以Top-N的形式展示给用户,以满足用户的信息需求。

用户和推荐系统在每个反馈循环中相互促进,用户的个人兴趣和行为通过推荐不断转移。对反馈循环进行建模,是强化学习推荐系统的重要基础之一。

相关推荐
-一杯为品-4 小时前
【强化学习】#7 基于表格型方法的规划和学习
学习·强化学习
程序员老周6661 天前
3. OpenManus-RL中使用AgentGym建立强化学习环境
sft·强化学习·openmanus·openmanus-rl·agentgym·行为克隆·强化学习环境
人类发明了工具1 天前
【强化学习】深度强化学习 - Deep Q-Network(DQN)算法
算法·数学建模·强化学习
仙人掌_lz5 天前
深入理解蒙特卡洛树搜索(MCTS):python从零实现
人工智能·python·算法·ai·强化学习·rl·mcts
仙人掌_lz9 天前
深度理解用于多智能体强化学习的单调价值函数分解QMIX算法:基于python从零实现
python·算法·强化学习·rl·价值函数
在未来等你10 天前
互联网大厂Java求职面试:电商商品推荐系统中的AI技术应用
java·缓存·kafka·推荐系统·向量数据库·jvm调优·spring ai
Mr.Winter`11 天前
深度强化学习 | 图文详细推导软性演员-评论家SAC算法原理
人工智能·深度学习·神经网络·机器学习·数据挖掘·机器人·强化学习
IT猿手11 天前
基于强化学习 Q-learning 算法求解城市场景下无人机三维路径规划研究,提供完整MATLAB代码
神经网络·算法·matlab·人机交互·无人机·强化学习·无人机三维路径规划
仙人掌_lz12 天前
理解多智能体深度确定性策略梯度MADDPG算法:基于python从零实现
python·算法·强化学习·策略梯度·rl