Kaggle-Predict Calorie Expenditure-(回归+xgb+cat+lgb+模型融合)

Predict Calorie Expenditure

题意:

给出每个人的基本信息,预测运动后的卡路里消耗值。

数据处理:

1.构造出人体机能、运动相关的特征值。

2.所有特征值进行从新组合,注意唯独爆炸

3.对连续信息分箱变成离散

建立模型:

1.xgb模型,lgb模型,cat模型

2.使用stack堆叠融合,使用3折交叉验证

3.对xgb、lgb、cat进行K折交叉验证,最终和stack进行结果融合。

代码:
python 复制代码
import os
import sys
import warnings
import numpy as np
import pandas as pd
import seaborn
from catboost import CatBoostRegressor
from lightgbm import LGBMRegressor
from matplotlib import pyplot as plt
import lightgbm
from mlxtend.regressor import StackingCVRegressor
from sklearn import clone
from sklearn.ensemble import VotingRegressor, StackingClassifier, StackingRegressor
from sklearn.linear_model import Lasso, LogisticRegression, RidgeCV
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, make_scorer, mean_squared_log_error
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
from sklearn.preprocessing import StandardScaler
from xgboost import XGBRegressor
from sklearn.preprocessing import RobustScaler
from sklearn.model_selection import KFold
from sklearn.linear_model import Ridge

def init():
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'  # 仅输出错误日志
    warnings.simplefilter('ignore')  # 忽略警告日志
    pd.set_option('display.width', 1000)
    pd.set_option('display.max_colwidth', 1000)
    pd.set_option("display.max_rows", 1000)
    pd.set_option("display.max_columns", 1000)


def show_dataframe(df):
    print("查看特征值和特征值类型\n" + str(df.dtypes) + "\n" + "-" * 100)
    print("查看前10行信息\n" + str(df.head()) + "\n" + "-" * 100)
    print("查看每个特征值的各种数据统计信息\n" + str(df.describe()) + "\n" + "-" * 100)
    print("输出重复行的个数\n" + str(df.duplicated().sum()) + "\n" + "-" * 100)
    print("查看每列的缺失值个数\n" + str(df.isnull().sum()) + "\n" + "-" * 100)
    print("查看缺失值的具体信息\n" + str(df.info()) + "\n" + "-" * 100)
    #print("输出X所有值出现的是什么,还有对应出现的次数\n" + str(df['X'].value_counts()) + "\n" + "-" * 100)


def show_relation(data, colx, coly):  # 输出某一特征值与目标值的关系
    if data[colx].dtype == 'object' or data[colx].dtype == 'category' or len(data[colx].unique()) < 20:
        seaborn.boxplot(x=colx, y=coly, data=data)
    else:
        plt.scatter(data[colx], data[coly])
    plt.xlabel(colx)
    plt.ylabel(coly)
    plt.show()

# 自定义RMSLE评分函数(GridSearchCV需要最大化评分,因此返回负RMSLE)
def rmsle_scorer(y_true, y_pred):
    y_pred = np.clip(y_pred, 1e-15, None)  # 防止对0取对数
    y_true = np.clip(y_true, 1e-15, None)
    log_error = np.log(y_pred + 1) - np.log(y_true + 1)
    rmsle = np.sqrt(np.mean(log_error ** 2))
    return -rmsle  # 返回负值,因为GridSearchCV默认最大化评分

if __name__ == '__main__':
    init()

    df_train = pd.read_csv('/kaggle/input/playground-series-s5e5/train.csv')
    df_test = pd.read_csv('/kaggle/input/playground-series-s5e5/test.csv')


    #for col in df_train.columns:
    #   show_relation(df_train, col, 'Calories')

    #特征工程
    df_all = pd.concat([df_train.drop(['id', 'Calories'], axis=1), df_test.drop(['id'], axis=1)], axis=0)

    df_all['Sex'] = df_all['Sex'].map({'male': 0, 'female': 1})
    df_all = df_all.reset_index(drop=True)
    #构造BMI
    df_all['BMI'] = df_all['Weight'] / (df_all['Height'] / 100) ** 2

    #Harris-Benedict公式
    df_all['BMR'] = 0
    df_all.loc[df_all['Sex'] == 0, 'BMR'] = 88.362 + (13.397 * df_all['Weight']) + (4.799 * df_all['Height']) - (5.677 * df_all['Age'])
    df_all.loc[df_all['Sex'] == 1, 'BMR'] = 447.593 + (9.247 * df_all['Weight']) + (3.098 * df_all['Height']) - (4.330 * df_all['Age'])

    # 数值特征标准化
    #numeric_features = ['Age', 'Height', 'Weight', 'Duration', 'Heart_Rate', 'Body_Temp']
    #scaler = StandardScaler()
    #df_all[numeric_features] = scaler.fit_transform(df_all[numeric_features])

    #运动强度特征
    df_all['Max_HR'] = 220 - df_all['Age']  # 最大心率
    df_all['HR_Reserve_Ratio'] = df_all['Heart_Rate'] / df_all['Max_HR']

    #交互特征
    df_all['Weight_Duration'] = df_all['Weight'] * df_all['Duration']
    df_all['Sex_Weight'] = df_all['Sex'] * df_all['Weight']

    # 构造运动功率特征
    df_all['workload'] = df_all['Weight'] * df_all['Duration'] * df_all['Heart_Rate'] / 1000

    # 构造生理特征交互项
    df_all['age_heart_ratio'] = df_all['Age'] / df_all['Heart_Rate']

    # 时间维度特征(如有时间戳)
    df_all['hour_of_day'] = df_all['Duration']/60/24

    # 组合特征
    numeric_cols = df_all.columns
    for i in range(len(numeric_cols)):
        feature_1 = numeric_cols[i]
        for j in range(i + 1, len(numeric_cols)):
            feature_2 = numeric_cols[j]
            df_all[f'{feature_1}_x_{feature_2}'] = df_all[feature_1] * df_all[feature_2]

    #数值归一化
    #scaler = RobustScaler()
    #df_all = scaler.fit_transform(df_all)
    now_col = ['Age', 'Height', 'Weight', 'Duration', 'Heart_Rate', 'Body_Temp', 'BMI']
    for i in now_col:
        df_all[i + "_box"] = pd.cut(df_all[i], bins=10, labels=False, right=False)

    X_train = df_all[:df_train.shape[0]]
    Y_train = np.log1p(df_train['Calories'])
    x_test = df_all[df_train.shape[0]:]

    #xgb
    model_xgb =estimator=XGBRegressor(
            random_state=42,
            n_estimators=8000,
            objective='reg:squarederror',
            eval_metric='rmse',
            device='cuda',
            learning_rate=0.05,
            max_depth=8,
            colsample_bytree=0.75,
            subsample=0.9,
            #reg_lambda = 1,
            #reg_alpha = 0.5,
            early_stopping_rounds=500,
    )
    #lgb
    model_lgb = lightgbm.LGBMRegressor(
        n_estimators=3000,  # 增加迭代次数配合早停
        learning_rate=0.03,  # 减小学习率
        num_leaves=15,  # 限制模型复杂度
        min_child_samples=25,  # 增加最小叶子样本数
        reg_alpha=0.1,  # L1正则化
        reg_lambda=0.1,  # L2正则化
        objective='regression_l1',  # 改用MAE损失
        early_stopping_rounds=500,
    )
    #cat
    model_cat = CatBoostRegressor(
        iterations=3500,
        learning_rate=0.02,
        depth=12,
        loss_function='RMSE',
        l2_leaf_reg=3,
        random_seed=42,
        eval_metric='RMSE',
        early_stopping_rounds=200,
        verbose=1000,
        task_type='GPU',
    )
    #融合
    #创建基模型列表(需禁用早停以生成完整预测)
    base_models = [
        ('xgb', XGBRegressor(
            early_stopping_rounds=None,  # 禁用早停
            **{k: v for k, v in model_xgb.get_params().items() if k != 'early_stopping_rounds'}
        )),
        ('lgb', LGBMRegressor(
            early_stopping_rounds=None,  # 禁用早停
            **{k: v for k, v in model_lgb.get_params().items() if k != 'early_stopping_rounds'}
        )),
        ('cat', CatBoostRegressor(
            early_stopping_rounds=None,  # 禁用早停
            **{k: v for k, v in model_cat.get_params().items() if k != 'early_stopping_rounds'}
        ))
    ]
    meta_model = RidgeCV()
    model_stack = StackingRegressor(
        estimators=base_models,
        final_estimator=meta_model,
        cv=3,  # 使用3折交叉验证生成元特征
        passthrough=False,  # 不使用原始特征
        verbose=1
    )

    FOLDS = 20
    KF = KFold(n_splits=FOLDS, shuffle=True, random_state=42)
    cat_features = ['Sex']
    oof_cat = np.zeros(len(df_train))
    pred_cat = np.zeros(len(df_test))
    oof_xgb = np.zeros(len(df_train))
    pred_xgb = np.zeros(len(df_test))
    oof_lgb = np.zeros(len(df_train))
    pred_lgb = np.zeros(len(df_test))

    for i, (train_idx, valid_idx) in enumerate(KF.split(X_train, Y_train)):
        print('#' * 15, i + 1, '#' * 15)
        ## SPLIT DS
        x_train, y_train = X_train.iloc[train_idx], Y_train.iloc[train_idx]
        x_valid, y_valid = X_train.iloc[valid_idx], Y_train.iloc[valid_idx]

        ## CATBOOST fit
        model_cat.fit(x_train, y_train, eval_set=[(x_valid, y_valid)], cat_features=cat_features,
                      use_best_model=True, verbose=0)
        ## XGB FIR
        model_xgb.fit(x_train, y_train, eval_set=[(x_valid, y_valid)], verbose=0)
        ## LGB MODEL
        model_lgb.fit(x_train, y_train, eval_set=[(x_valid, y_valid)])
        ## PREDICTION CATBOOST
        oof_cat[valid_idx] = model_cat.predict(x_valid)
        pred_cat += model_cat.predict(x_test)
        ## PREDICTION XGB
        oof_xgb[valid_idx] = model_xgb.predict(x_valid)
        pred_xgb += model_xgb.predict(x_test)
        ## PREDICTION LGB
        oof_lgb[valid_idx] = model_lgb.predict(x_valid)
        pred_lgb += model_lgb.predict(x_test)

        cat_rmse = mean_squared_error(y_valid, oof_cat[valid_idx]) ** 0.5
        xgb_rmse = mean_squared_error(y_valid, oof_xgb[valid_idx]) ** 0.5
        lgb_rmse = mean_squared_error(y_valid, oof_lgb[valid_idx]) ** 0.5

        print(
            f'FOLD {i + 1} CATBOOST_RMSE = {cat_rmse:.4f} <=> XGB_RMSE = {xgb_rmse:.4f} <=> LGB_RMSE = {lgb_rmse:.4f}')

    #预测
    pred_cat /= FOLDS
    pred_xgb /= FOLDS
    pred_lgb /= FOLDS
    pred_stack = model_stack.predict(df_test)

    pred_all = np.expm1(pred_xgb) * 0.1 + np.expm1(pred_stack) * 0.80 + np.expm1(pred_cat) * 0.1

    submission = pd.DataFrame({
        'id': df_test['id'],
        'Calories': pred_all
    })
    submission['Calories'] = np.clip(submission['Calories'], a_min=1, a_max=20*df_test['Duration'])
    submission.to_csv('/kaggle/working/submission.csv', index=False)
相关推荐
yzx9910132 小时前
RNN 在时序数据处理中的核心作用
人工智能·rnn·深度学习
一点.点3 小时前
李沐动手深度学习(pycharm中运行笔记)——10.多层感知机+从零实现+简介实现
人工智能·笔记·python·深度学习·pycharm
雾迟sec3 小时前
机器学习中的 K-均值聚类算法及其优缺点
人工智能·深度学习·机器学习·语言模型·语音识别
新加坡内哥谈技术3 小时前
Anthropic公司近日发布了两款新一代大型语言模型Claude Opus 4与Claude Sonnet 4
人工智能·语言模型·自然语言处理
硅谷秋水3 小时前
Real2Render2Real:无需动力学仿真或机器人硬件即可扩展机器人数据
人工智能·机器学习·计算机视觉·机器人
Ai墨芯1113 小时前
小样本机器学习再发力!2025再登Nature正刊
人工智能·机器学习
jndingxin3 小时前
OpenCV CUDA模块图像过滤------创建一个 Sobel 滤波器函数createSobelFilter()
人工智能·opencv·计算机视觉
那雨倾城3 小时前
使用 OpenCV 实现哈哈镜效果
人工智能·python·opencv·计算机视觉
LitchiCheng4 小时前
RISC-V 开发板 MUSE Pi Pro OpenCV结合Gstreamer实时显示CSI摄像头
人工智能·opencv·risc-v
平头某4 小时前
如何在 Django 中集成 MCP Server
人工智能·django·mcp