Elasticsearch 如何实现跨数据中心的数据同步?

实战场景

双数据中心容灾,要求RPO<5分钟,RTO<30分钟

‌RPO(Recovery Point Objective)‌:

RPO指的是灾难发生后,系统能够恢复到的数据更新点的时间。简单来说,它衡量的是数据丢失的量。在你的例子中,RPO<5分钟意味着在灾难发生后,系统能够恢复到灾难发生前5分钟内的数据状态,从而确保数据丢失量控制在5分钟以内。

‌RTO(Recovery Time Objective)‌:

RTO则是指从灾难发生到业务系统完全恢复并可以重新提供服务所需的时间。它衡量的是业务中断的时间长度。在你的例子中,RTO<30分钟意味着在灾难发生后,系统能够在30分钟内完全恢复并重新提供服务,从而将业务中断的时间控制在30分钟以内。

1. CCR核心配置(北京->上海 单向同步)

bash:ccr_setup.sh 复制代码
# 建立集群间安全连接
PUT /_cluster/settings
{
  "persistent": {
    "cluster.remote.shanghai_cluster.seeds": "es-sh-node1:9300,es-sh-node2:9300",
    "cluster.remote.shanghai_cluster.skip_unavailable": true
  }
}

# 创建跟随策略(同步订单索引)
PUT /_ccr/auto_follow/jd_orders
{
  "remote_cluster" : "shanghai_cluster",
  "leader_index_patterns" : ["jd_orders-*"],
  "follow_index_pattern" : "sh_{{leader_index}}",
  "max_read_request_operation_count" : 5120,
  "max_outstanding_read_requests" : 24
}

2. Logstash增量备份(双向同步商品索引)

ruby:logstash/pipeline/jd_goods.conf 复制代码
input {
  elasticsearch {
    hosts => ["http://es-bj-node1:9200"]
    index => "jd_goods"
    query => '{ "query": { "range": { "@timestamp": { "gte": "now-5m" }}}}'
    docinfo => true
    size => 500
    scroll => "5m"
  }
}

output {
  # 上海集群写入
  elasticsearch {
    hosts => ["http://es-sh-node1:9200"]
    index => "%{[@metadata][_index]}"
    document_id => "%{[@metadata][_id]}"
    pipeline => "timestamp_pipeline"
  }
  
  # 本地备份
  elasticsearch {
    hosts => ["http://localhost:9200"]
    index => "jd_goods_backup"
  }
}

3. 网络优化配置

yaml:config/elasticsearch.yml 复制代码
# 跨数据中心专用线程池
thread_pool.search.size: 32
thread_pool.search.queue_size: 2000

# 传输层参数优化
transport.tcp.compress: true
transport.profiles.default.tcp_keep_alive: true
transport.profiles.default.tcp_no_delay: true

监控方案(基于Kibana):

json:.kibana/monitoring.json 复制代码
{
  "alert": {
    "name": "CCR延迟告警",
    "conditions": {
      "script": "ctx.results[0].hits.hits[0]._source.follower_lag > 300000"
    },
    "actions": {
      "webhook": "http://alert.jd.com/ccr_warn"
    }
  }
}

实战经验

  1. 使用专用10Gbps通道,实测同步延迟120-180ms
  2. 索引分片数=数据中心数量×2(北京8节点集群使用24分片)
  3. 采用时间戳管道统一时区:
bash 复制代码
PUT _ingest/pipeline/timestamp_pipeline
{
  "processors": [{
    "date": {
      "field": "bj_timestamp",
      "target_field": "@timestamp",
      "timezone": "Asia/Shanghai",
      "formats": ["ISO8601"]
    }
  }]
}
相关推荐
宸津-代码粉碎机1 小时前
LLM 模型部署难题的技术突破:从轻量化到分布式推理的全栈解决方案
java·大数据·人工智能·分布式·python
NeRF_er7 小时前
STORM代码阅读笔记
大数据·笔记·storm
程序员编程指南9 小时前
Qt 开发 IDE 插件开发指南
c语言·c++·ide·qt·elasticsearch
TMT星球9 小时前
好未来披露2026财年Q1财报:净利润3128万美元,同比大增174%
搜索引擎
TDengine (老段)11 小时前
TDengine 中 TDgp 中添加机器学习模型
大数据·数据库·算法·机器学习·数据分析·时序数据库·tdengine
希艾席帝恩13 小时前
拥抱智慧物流时代:数字孪生技术的应用与前景
大数据·人工智能·低代码·数字化转型·业务系统
Bar_artist13 小时前
离线智能破局,架构创新突围:RockAI与中国AI的“另一条车道”
大数据·人工智能
牛客企业服务14 小时前
2025校招AI应用:校园招聘的革新与挑战
大数据·人工智能·机器学习·面试·职场和发展·求职招聘·语音识别
电商数据girl15 小时前
如何利用API接口与网页爬虫协同进行电商平台商品数据采集?
大数据·开发语言·人工智能·python·django·json
TDengine (老段)16 小时前
TDengine 中 TDgpt 异常检测的数据密度算法
java·大数据·算法·时序数据库·iot·tdengine·涛思数据