python调用langchain实现RAG

一、安装langchain

安装依赖

bash 复制代码
python -m venv env

.\env\Scripts\activate

pip3 install langchain

pip3 install langchain-core

pip3 install langchain-openai

pip3 install langchain-community

pip3 install  dashscope

pip3 install  langchain_postgres

pip3 install "psycopg[binary]"

导入库函数

bash 复制代码
from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.messages import HumanMessage,SystemMessage
from langchain_community.embeddings import DashScopeEmbeddings
from langchain_core.documents import Document

二、知识库转换向量

使用通义千问的向量模型将私域知识库的数据转化为制定维度的向量,并将向量存入向量数据库pgvector中

python 复制代码
COLLECTION_NAME = "t_rag"
CONNECTION = "postgresql+psycopg://postgres:12346@server200:5432/postgres_db"

#实例化千问的向量模型
embedding = DashScopeEmbeddings(model="text-embedding-v3",dashscope_api_key="sk-xxx")

#**创建向量数据库
vector_store = PGVector(
    connection = CONNECTION,
    collection_name = COLLECTION_NAME,
    embeddings = embedding
)

准备文本转化向量存储

python 复制代码
def save_vector():
    print("save_vector  start .....")
    documents = [
        Document(page_content="段一凡出生东川县一个农民工家庭,毕业于江南大学,成绩优异",metadata={"source":"brief"},id=1),
        Document(page_content="现任吉南市环保局局长,曾任市共青团副书记,此前还担任过回龙乡乡长、党委书记等职务",metadata={"source":"brief"},id=2),
        Document(page_content="肖素素、王雪莹、吴晓恙、刘淼淼这四个大美女与他都有着千丝万缕的关系",metadata={"source":"brief"},id=3),
        Document(page_content="肖素素某国开国将军的曾孙女,美丽智慧,某国企总经理,与段一凡生死患难,互生情愫,但二人身份差距悬殊",metadata={"source":"brief"},id=4),
        Document(page_content="王雪莹省战略策划室副主任王庆支之女,段一凡学妹,喜欢段一凡",metadata={"source":"brief"},id=5),
        Document(page_content="吴晓恙商人之家,典型富二代,喜欢段一凡",metadata={"source":"brief"},id=6),
        Document(page_content="刘淼淼冰冷美女,前县委书记刘海龙之女,刘海龙整治过段一凡,刘淼淼自杀,被段一凡救过,对段一凡产生爱意",metadata={"source":"brief"},id=7),
    ]
    uuids = [str(uuid4()) for _ in range(len(documents))]
    try:
        vector_store.add_documents(documents=documents, ids=uuids)
        print("save_vector successful.")
    except Exception as e:
        print(f"save_vector failed: {e}")
python 复制代码
def main():    
    save_vector()
   

文本数据库成功存入向量数据库

三、检索增强

将提示词和匹配向量一起发给大模型进行提问

python 复制代码
def rag_vector(query):
    print("query_vector  start .....")
    #results = vector_store.similarity_search(query = query,k=5,filter={"source": "brief"})
    #通过向量生成检索器
    retriever = vector_store.as_retriever(search_type="mmr", search_kwargs={"k": 5})
    prompt = hub.pull("rlm/rag-prompt")
    messages = prompt.invoke({
        "question": query,
        "context": retriever.invoke(query)
    })
    llm =  ChatTongyi(
        streaming = False,
        model = "qwen-plus",
        api_key = "sk-xxxx",
    )

    ai_message =  llm.invoke(messages)
    print("AI answer :----------",ai_message)
python 复制代码
def main():    
    rag_vector("段一凡是谁?")

大模型的回答基于上下文向量信息进行学习

相关推荐
CodeCraft Studio39 分钟前
Excel处理控件Aspose.Cells教程:使用 Python 在 Excel 中创建甘特图
python·excel·项目管理·甘特图·aspose·aspose.cells
SaleCoder2 小时前
用Python构建机器学习模型预测股票趋势:从数据到部署的实战指南
开发语言·python·机器学习·python股票预测·lstm股票模型·机器学习股票趋势
技术猿188702783518 小时前
实现“micro 关键字搜索全覆盖商品”并通过 API 接口提供实时数据(一个方法)
开发语言·网络·python·深度学习·测试工具
烛阴8 小时前
为什么你的Python项目总是混乱?层级包构建全解析
前端·python
三金C_C8 小时前
asyncio 与 uvloop
python·异步·asyncio
放飞自我的Coder8 小时前
【colab 使用uv创建一个新的python版本运行】
开发语言·python·uv
黎茗Dawn9 小时前
连接new服务器注意事项
linux·python
LJianK19 小时前
Java和JavaScript的&&和||
java·javascript·python
天天爱吃肉821811 小时前
效率提升新范式:基于数字孪生的汽车标定技术革命
python·嵌入式硬件·汽车
lemon_sjdk12 小时前
Java飞机大战小游戏(升级版)
java·前端·python