python调用langchain实现RAG

一、安装langchain

安装依赖

bash 复制代码
python -m venv env

.\env\Scripts\activate

pip3 install langchain

pip3 install langchain-core

pip3 install langchain-openai

pip3 install langchain-community

pip3 install  dashscope

pip3 install  langchain_postgres

pip3 install "psycopg[binary]"

导入库函数

bash 复制代码
from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.messages import HumanMessage,SystemMessage
from langchain_community.embeddings import DashScopeEmbeddings
from langchain_core.documents import Document

二、知识库转换向量

使用通义千问的向量模型将私域知识库的数据转化为制定维度的向量,并将向量存入向量数据库pgvector中

python 复制代码
COLLECTION_NAME = "t_rag"
CONNECTION = "postgresql+psycopg://postgres:12346@server200:5432/postgres_db"

#实例化千问的向量模型
embedding = DashScopeEmbeddings(model="text-embedding-v3",dashscope_api_key="sk-xxx")

#**创建向量数据库
vector_store = PGVector(
    connection = CONNECTION,
    collection_name = COLLECTION_NAME,
    embeddings = embedding
)

准备文本转化向量存储

python 复制代码
def save_vector():
    print("save_vector  start .....")
    documents = [
        Document(page_content="段一凡出生东川县一个农民工家庭,毕业于江南大学,成绩优异",metadata={"source":"brief"},id=1),
        Document(page_content="现任吉南市环保局局长,曾任市共青团副书记,此前还担任过回龙乡乡长、党委书记等职务",metadata={"source":"brief"},id=2),
        Document(page_content="肖素素、王雪莹、吴晓恙、刘淼淼这四个大美女与他都有着千丝万缕的关系",metadata={"source":"brief"},id=3),
        Document(page_content="肖素素某国开国将军的曾孙女,美丽智慧,某国企总经理,与段一凡生死患难,互生情愫,但二人身份差距悬殊",metadata={"source":"brief"},id=4),
        Document(page_content="王雪莹省战略策划室副主任王庆支之女,段一凡学妹,喜欢段一凡",metadata={"source":"brief"},id=5),
        Document(page_content="吴晓恙商人之家,典型富二代,喜欢段一凡",metadata={"source":"brief"},id=6),
        Document(page_content="刘淼淼冰冷美女,前县委书记刘海龙之女,刘海龙整治过段一凡,刘淼淼自杀,被段一凡救过,对段一凡产生爱意",metadata={"source":"brief"},id=7),
    ]
    uuids = [str(uuid4()) for _ in range(len(documents))]
    try:
        vector_store.add_documents(documents=documents, ids=uuids)
        print("save_vector successful.")
    except Exception as e:
        print(f"save_vector failed: {e}")
python 复制代码
def main():    
    save_vector()
   

文本数据库成功存入向量数据库

三、检索增强

将提示词和匹配向量一起发给大模型进行提问

python 复制代码
def rag_vector(query):
    print("query_vector  start .....")
    #results = vector_store.similarity_search(query = query,k=5,filter={"source": "brief"})
    #通过向量生成检索器
    retriever = vector_store.as_retriever(search_type="mmr", search_kwargs={"k": 5})
    prompt = hub.pull("rlm/rag-prompt")
    messages = prompt.invoke({
        "question": query,
        "context": retriever.invoke(query)
    })
    llm =  ChatTongyi(
        streaming = False,
        model = "qwen-plus",
        api_key = "sk-xxxx",
    )

    ai_message =  llm.invoke(messages)
    print("AI answer :----------",ai_message)
python 复制代码
def main():    
    rag_vector("段一凡是谁?")

大模型的回答基于上下文向量信息进行学习

相关推荐
先做个垃圾出来………15 分钟前
Python 标准库模块shutil
linux·服务器·python
tryCbest4 小时前
Python人工智能中scikit-learn模块的使用介绍
人工智能·python·scikit-learn
qq_332539457 小时前
Python自动化测试实战:reCAPTCHA V3绕过技术深度解析
自动化测试·python·web安全·验证码破解·recaptcha
大模型真好玩8 小时前
深入浅出LangChain AI Agent智能体开发教程(八)—LangChain接入MCP实现流程
人工智能·python·mcp
阿松のblog9 小时前
vue3+ts+flask+websocket实现实时异物检测
python·websocket·flask
TS的美梦12 小时前
scanpy单细胞转录组python教程(四):单样本数据分析之降维聚类及细胞注释
python·数据分析·聚类·单细胞转录组·scanpy
一涯12 小时前
用python写一个抓取股市关键词的程序
前端·python
王国强200913 小时前
LangChain 设计原理分析¹⁰ | 向量数据库与 Retriever 机制
langchain
真就死难13 小时前
适用于个人开发、中小型项目的Embedding方案(配合ChromaDB)
python·embedding·rag
yanxing.D14 小时前
OpenCV轻松入门_面向python(第三章图像运算)
人工智能·python·opencv