动态规划-931.下降路径最小和-力扣(LeetCode)

一、题目解析

从最顶上出发,有三个位置选择,左中下(边界除外),使其走到最下面时下降路径最小。

二、算法原理

1、状态表示

我们需要的是到达[i,j]的最小路径和,所以此时dp[i][j]表示:到达[i,j]位置时,最小的下降路径

2、状态转移方程

对于某个位置有三种下降方式,自然也就有三种到达该位置的方式

dp[i][j] 从[i-1,j-1]->[i,j]->dp[i-1][i-1]+matrix[i][j]

从[i-1,j]->[i,j]->dp[i-1][j]+matrix[i][j]

从[i-1][j+1]->[i,j]->dp[i-1][j+1]+matrix[i][j]

dp[i][j]=min(dp[i-1][j-1]+matrix[i][j],min(dp[i-1][j]+matrix[i][j],dp[i-1][j+1]+matrix[i][j]))

3、初始化

除了最上面一排初始化为0,其余位置要初始化为最大值,由于min的原因,如果都初始化为0,则会计算出错

4、填表顺序

从上往下,从左往右

5、返回值

由于到达最下面就停止了,所以取最后一排的最小值

自己动手实现一下吧,链接:931. 下降路径最小和 - 力扣(LeetCode)

三、代码示例

cpp 复制代码
class Solution {
public:
    int minFallingPathSum(vector<vector<int>>& matrix) {
        int n = matrix.size();
        vector<vector<int>> dp(n+1,vector<int>(n+2,INT_MAX));
        for(int j = 0;j<n+2;j++) dp[0][j] = 0;
        for(int i = 1;i<=n;i++)
        {
            for(int j = 1;j<=n;j++)
            {
                dp[i][j] = min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1])) + matrix[i-1][j-1];
            }
        }
        int ret = INT_MAX;
        for(int j = 1;j<=n;j++) ret = min(ret,dp[n][j]);
        return ret;
    }
};

看到最后,如果对您有所帮助,还请点赞、收藏和关注,点点关注不迷路,我们下期再见!

相关推荐
郭涤生3 小时前
布隆过滤器
c++
智者知已应修善业3 小时前
【求中位数】2024-1-23
c语言·c++·经验分享·笔记·算法
9ilk3 小时前
【C++】--- 特殊类设计
开发语言·c++·后端
地平线开发者4 小时前
PTQ 量化数值范围与优化
算法·自动驾驶
sali-tec4 小时前
C# 基于halcon的视觉工作流-章68 深度学习-对象检测
开发语言·算法·计算机视觉·重构·c#
测试人社区-小明4 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
罗西的思考5 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
程序员zgh7 小时前
Linux系统常用命令集合
linux·运维·服务器·c语言·开发语言·c++
獭.獭.7 小时前
C++ -- STL【unordered_set与unordered_map的实现】
开发语言·c++·unordered_map·unordered_set
qq_433554547 小时前
C++数位DP
c++·算法·图论