动态规划-931.下降路径最小和-力扣(LeetCode)

一、题目解析

从最顶上出发,有三个位置选择,左中下(边界除外),使其走到最下面时下降路径最小。

二、算法原理

1、状态表示

我们需要的是到达[i,j]的最小路径和,所以此时dp[i][j]表示:到达[i,j]位置时,最小的下降路径

2、状态转移方程

对于某个位置有三种下降方式,自然也就有三种到达该位置的方式

dp[i][j] 从[i-1,j-1]->[i,j]->dp[i-1][i-1]+matrix[i][j]

从[i-1,j]->[i,j]->dp[i-1][j]+matrix[i][j]

从[i-1][j+1]->[i,j]->dp[i-1][j+1]+matrix[i][j]

dp[i][j]=min(dp[i-1][j-1]+matrix[i][j],min(dp[i-1][j]+matrix[i][j],dp[i-1][j+1]+matrix[i][j]))

3、初始化

除了最上面一排初始化为0,其余位置要初始化为最大值,由于min的原因,如果都初始化为0,则会计算出错

4、填表顺序

从上往下,从左往右

5、返回值

由于到达最下面就停止了,所以取最后一排的最小值

自己动手实现一下吧,链接:931. 下降路径最小和 - 力扣(LeetCode)

三、代码示例

cpp 复制代码
class Solution {
public:
    int minFallingPathSum(vector<vector<int>>& matrix) {
        int n = matrix.size();
        vector<vector<int>> dp(n+1,vector<int>(n+2,INT_MAX));
        for(int j = 0;j<n+2;j++) dp[0][j] = 0;
        for(int i = 1;i<=n;i++)
        {
            for(int j = 1;j<=n;j++)
            {
                dp[i][j] = min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1])) + matrix[i-1][j-1];
            }
        }
        int ret = INT_MAX;
        for(int j = 1;j<=n;j++) ret = min(ret,dp[n][j]);
        return ret;
    }
};

看到最后,如果对您有所帮助,还请点赞、收藏和关注,点点关注不迷路,我们下期再见!

相关推荐
mit6.82411 分钟前
[LVGL] 配置lv_conf.h | 条件编译 | 显示屏lv_display
c++·mfc
板鸭〈小号〉33 分钟前
线程安全的单例模式,STL和智能指针
开发语言·c++·单例模式
2501_9247471133 分钟前
驾驶场景玩手机识别准确率↑32%:陌讯动态特征融合算法实战解析
人工智能·算法·计算机视觉·智能手机
阿飞__1 小时前
C++使用FFmpeg进行视频推流
c++·ffmpeg·音视频
limitless_peter1 小时前
优先队列,链表优化
c++·算法·链表
新手村领路人3 小时前
c++ opencv调用yolo onnx文件
c++·opencv·yolo
啊森要自信3 小时前
【QT】常⽤控件详解(六)多元素控件 QListWidget && Table Widget && Tree Widget
c语言·开发语言·c++·qt
屁股割了还要学3 小时前
【数据结构入门】栈和队列
c语言·开发语言·数据结构·学习·算法·青少年编程
Monkey的自我迭代3 小时前
支持向量机(SVM)算法依赖的数学知识详解
算法·机器学习·支持向量机
阿彬爱学习4 小时前
AI 大模型企业级应用落地挑战与解决方案
人工智能·算法·微信·chatgpt·开源