lesson04-简单回归案例实战(理论+代码)

理解线性回归及梯度下降优化

引言

在机器学习的基础课程中,我们经常遇到的一个重要概念就是线性回归。今天,我们将深入探讨这一主题,并通过具体的例子来了解如何利用梯度下降方法对模型进行优化。

线性回归简介

线性回归是一种统计方法,用于确定两个变量之间的关系。简单来说,如果我们有一个自变量 XX 和因变量 YY,线性回归可以帮助我们找到一条最佳拟合直线,这条直线可以用公式 Y=WX+bY=WX+b 来表示,其中 WW 是权重,bb 是偏置。

损失函数

为了评估模型的好坏,我们需要定义一个损失函数。对于线性回归而言,通常使用平方误差作为损失函数,即 loss=(WX+b−y)2loss=(WX+b−y)2。

梯度下降优化

梯度下降是一种迭代优化算法,用来最小化损失函数。每次迭代过程中,我们会更新参数 WW 的值,具体更新规则为 w′=w−lr×∇loss/∇ww′=w−lr×∇loss/∇w,这里的 lrlr 表示学习率,控制着每一步调整的幅度。

迭代优化

通过不断调整 WW 和 bb 的值,使得损失函数逐渐减小,直到达到局部或全局最小值点。这个过程需要多次迭代计算,直至满足预设的停止条件为止。

下一课时预告

接下来的一课时,我们将一起探索著名的MNIST手写数字识别任务,敬请期待!

结语

感谢大家的关注与支持,希望今天的分享能够加深您对线性回归以及梯度下降算法的理解。让我们共同期待下一节课的到来吧!

实战代码

python 复制代码
import numpy as np

# y = wx + b
def compute_error_for_line_given_points(b, w, points):
    totalError = 0
    for i in range(0, len(points)):
        x = points[i, 0]
        y = points[i, 1]
        totalError += (y - (w * x + b)) ** 2
    return totalError / float(len(points))

def step_gradient(b_current, w_current, points, learningRate):
    b_gradient = 0
    w_gradient = 0
    N = float(len(points))
    for i in range(0, len(points)):
        x = points[i, 0]
        y = points[i, 1]
        b_gradient += -(2/N) * (y - ((w_current * x) + b_current))
        w_gradient += -(2/N) * x * (y - ((w_current * x) + b_current))
    new_b = b_current - (learningRate * b_gradient)
    new_m = w_current - (learningRate * w_gradient)
    return [new_b, new_m]

def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):
    b = starting_b
    m = starting_m
    for i in range(num_iterations):
        b, m = step_gradient(b, m, np.array(points), learning_rate)
    return [b, m]

def run():
    points = np.genfromtxt("data.csv", delimiter=",")
    learning_rate = 0.0001
    initial_b = 0 # initial y-intercept guess
    initial_m = 0 # initial slope guess
    num_iterations = 1000
    print("Starting gradient descent at b = {0}, m = {1}, error = {2}"
          .format(initial_b, initial_m,
                  compute_error_for_line_given_points(initial_b, initial_m, points))
          )
    print("Running...")
    [b, m] = gradient_descent_runner(points, initial_b, initial_m, learning_rate, num_iterations)
    print("After {0} iterations b = {1}, m = {2}, error = {3}".
          format(num_iterations, b, m,
                 compute_error_for_line_given_points(b, m, points))
          )

if __name__ == '__main__':
    run()

🧠 一、代码概述

这段代码的主要目的是:

  • 使用一个简单的线性模型:y = mx + b
  • 给定一个二维数据集 data.csv,其中每行有两个值:xy
  • 使用梯度下降算法 迭代地更新 mb,使得预测的 y 尽可能接近真实值
  • 最终输出经过多次迭代后的最优 mb 值,并计算最终误差

📁 二、文件结构说明

  1. 导入库

    python 复制代码
    import numpy as np
    • 引入 NumPy 库,用于高效的数值计算和数组操作。
  2. 函数定义

    • compute_error_for_line_given_points(b, w, points)
      计算当前直线的平均平方误差(MSE)
    • step_gradient(b_current, w_current, points, learningRate)
      执行一次梯度下降步骤,返回更新后的 bm
    • gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations)
      迭代运行梯度下降过程
    • run()
      主函数,加载数据、调用训练函数、打印结果
  3. 主程序入口

python 复制代码
if __name__ == '__main__':
    run()

📌 三、函数详解

1. compute_error_for_line_given_points(b, w, points)

功能:

计算当前模型参数下的均方误差(Mean Squared Error, MSE)

公式:

MSE=1N∑i=1N(yi−(wxi+b))2MSE=N1​i=1∑N​(yi​−(wxi​+b))2

参数:
  • b: 当前截距(bias / y-intercept)
  • w: 当前斜率(weight / slope)
  • points: 数据点集合,是一个二维数组,每行表示一个 (x, y)
返回值:
  • 平均误差值(越小越好)

2. step_gradient(b_current, w_current, points, learningRate)

功能:

执行一次梯度下降步骤 ,根据当前的 bm 更新它们的值。

核心公式(梯度下降更新规则):

b′=b−η⋅∂MSE∂bb′=b−η⋅∂b∂MSE​

m′=m−η⋅∂MSE∂mm′=m−η⋅∂m∂MSE​

其中:

  • ηη 是学习率(learning rate)
  • 梯度是通过对损失函数分别对 bm 求导得到的
导数推导:

∂MSE∂b=2N∑i=1N(yi−(mxi+b))⋅(−1)∂b∂MSE​=N2​i=1∑N​(yi​−(mxi​+b))⋅(−1)

∂MSE∂m=2N∑i=1N(yi−(mxi+b))⋅(−xi)∂m∂MSE​=N2​i=1∑N​(yi​−(mxi​+b))⋅(−xi​)

你在代码中实现了这两个梯度的累加。

返回值:
  • [new_b, new_m]:更新后的模型参数

3. gradient_descent_runner(...)

功能:

循环执行 step_gradient 多次,完成完整的梯度下降过程。

参数:
  • points: 数据集
  • starting_b, starting_m: 初始参数
  • learning_rate: 学习率
  • num_iterations: 迭代次数
输出:
  • 最终的 bm

4. run()

功能:
  • 加载 CSV 数据文件
  • 设置初始参数
  • 调用梯度下降函数进行训练
  • 打印训练前后误差和参数变化

输出结果展示

这表明经过 1000 次迭代后,模型已经基本收敛。

相关推荐
zdy12635746887 分钟前
python37天打卡
人工智能·深度学习·算法
chicpopoo12 分钟前
Python打卡DAY40
人工智能·python·机器学习
yes or ok34 分钟前
二、OpenCV图像处理-图像处理
图像处理·人工智能·opencv
Hygge-star35 分钟前
【Java进阶】图像处理:从基础概念掌握实际操作
java·图像处理·人工智能·程序人生·职场和发展
开利网络1 小时前
数据资产化浪潮下,企业如何构建去中心化商业新生态?
大数据·数据库·人工智能·信息可视化·重构
jndingxin1 小时前
OpenCV CUDA模块直方图计算------用于在 GPU 上执行对比度受限的自适应直方图均衡类cv::cuda::CLAHE
人工智能·opencv·计算机视觉
小饼干超人2 小时前
手写multi-head Self-Attention,各个算子详细注释版
人工智能·深度学习·机器学习
MuQYun2 小时前
Pytorch的梯度控制
人工智能·pytorch·python
kernelguru2 小时前
AI绘画提示词:从零开始掌握Prompt Engineering的艺术
人工智能·其他·ai作画·prompt
WPG大大通2 小时前
直播预告 | 聚焦芯必达|打造可靠高效的国产 MCU 与智能 SBC 汽车解决方案
大数据·人工智能·mcu·汽车·大大通·研讨会