基于昇腾MindSpeed训练加速库玩转智谱GLM-4-0414模型

智谱GLM-4-0414模型提供32B和9B两种参数规模,涵盖基础、推理和沉思等多种模型类型,均基于 MIT 许可协议开放。其中,推理模型 GLM-Z1-32B-0414 性能卓越,与 DeepSeek-R1 等领先模型相当,实测推理速度达每秒200个Tokens。此前,魔乐社区已推出支持昇思MindSpore和昇腾MindIE的版本。如今,昇腾MindSpeed训练加速库开箱即用的版本也已上线,共包含6个模型,欢迎开发者们下载体验!

🔗魔乐社区模型下载链接:

https://modelers.cn/models/Models_Ecosystem/GLM-Z1-Rumination-32B-0414

https://modelers.cn/models/Models_Ecosystem/GLM-Z1-9B-0414

https://modelers.cn/models/Models_Ecosystem/GLM-Z1-32B-0414

https://modelers.cn/models/Models_Ecosystem/GLM-4-9B-0414

https://modelers.cn/models/Models_Ecosystem/GLM-4-32B-Base-0414

https://modelers.cn/models/Models_Ecosystem/GLM-4-32B-0414

不多说,直接进入实践环节。接下来,我们将基于昇腾MindSpeed训练加速库部署 GLM-Z1-9B-0414 模型,并进行训练和推理操作。

NO.1 环境配置

1.1 硬件要求

GLM-Z1-9B-0414的参考硬件配置如下, 本文将以A2 单机8卡训练和推理为例进行介绍:

|--------|--------|-----------------|
| 类型 | 硬件 | 配置 |
| 全参训练 | NPU | 8 x Ascend NPUs |

1.2 MindSpeed-LLM仓库部署

MindSpeed-LLM的主要依赖配套如下表,安装步骤参考安装指导:

https://gitee.com/ascend/MindSpeed-LLM/blob/master/docs/features/install_guide.md

|----------------------------------------|---------|
| 依赖软件 | 版本 |
| CANN Toolkit(开发套件) | 商发版本 |
| CANN Kernel(算子包) | 商发版本 |
| CANN NNAL(Ascend Transformer Boost加速库) | 商发版本 |
| Python | >=3.10 |
| PyTorch | 2.5.1 |
| torch_npu插件 | 2.5.1 |
| apex | 商发版本 |

仓库拉取

复制代码
git clone https://gitee.com/ascend/MindSpeed-LLM.gitgit clone https://github.com/NVIDIA/Megatron-LM.gitcd Megatron-LMgit checkout core_r0.8.0cp -r megatron ../MindSpeed-LLM/cd ..cd MindSpeed-LLMmkdir logsmkdir datasetmkdir ckpt

环境搭建​​​​​​​

复制代码
# python3.10conda create -n test python=3.10conda activate test # 安装 torch 和 torch_npu,注意要选择对应python版本、x86或arm的torch、torch_npu及apex包pip install torch-2.5.1-cp310-cp310m-manylinux2014_aarch64.whlpip install torch_npu-2.5.1*-cp310-cp310m-linux_aarch64.whl # apex for Ascend 参考 https://gitee.com/ascend/apex# 建议从原仓编译安装 # 安装加速库git clone https://gitee.com/ascend/MindSpeed.gitcd MindSpeed# checkout commit from MindSpeed core_r0.8.0git checkout 2c085cc9pip install -r requirements.txtpip3 install -e .cd ../MindSpeed-LLM  # 安装其余依赖库pip install -r requirements.txt

NO.2 权重/数据准备

2.1 权重转换

权重下载

从魔乐社区或者HuggingFace下载权重和配置文件。

魔乐下载链接(享国内加速下载):https://modelers.cn/models/zhipuai/GLM-Z1-9B-0414

权重转换

MindSpeed-LLM提供脚本将权重转换为mcore权重,用于训练、推理、评估等任务:

https://gitee.com/lliilil/MindSpeed-LLM/blob/master/tests/0day/glm-z1-9b-0414/ckpt_convert_glm4_z1_9b_0414_hf2mcore.sh

使用方法如下,请根据实际需要的TP/PP等切分策略和权重路径修改权重转换脚本。​​​​​​​

复制代码
cd MindSpeed-LLMbash tests/0day/glm-z1-9b-0414/ckpt_convert_glm4_z1_9b_0414_hf2mcore.sh

2.2 数据预处理

MindSpeed-LLM提供脚本进行数据集处理:

https://gitee.com/lliilil/MindSpeed-LLM/blob/master/tests/0day/glm-z1-9b-0414/data_convert_glm4_z1_9b_0414_pretrain.sh

使用方法如下,请根据实际需要修改以下参数​​​​​​​

复制代码
cd MindSpeed-LLMbash tests/0day/glm-z1-9b-0414/data_convert_glm4_z1_9b_0414_pretrain.sh

|--------------------------|-----------------|
| 参数名 | 含义 |
| --input | 数据集路径 |
| --tokenizer-name-or-path | 模型tokenizer目录 |
| --output-prefix | 数据集处理完的输出路径及前缀名 |

NO.3 训练​​​​​​​

复制代码
cd MindSpeed-LLMbash tests/0day/glm-z1-9b-0414/pretrain_glm4_z1_9b_0414_8k_ptd.sh

用户需要根据实际情况修改脚本中以下变量

|----------------|-----------------------------------|
| 变量名 | 含义 |
| MASTER_ADDR | 多机情况下主节点IP |
| NODE_RANK | 多机下,各机对应节点序号0-8 |
| CKPT_SAVE_DIR | 训练中权重保存路径 |
| DATA_PATH | 数据预处理后的数据路径 |
| TOKENIZER_PATH | tokenizer目录 |
| CKPT_LOAD_DIR | 权重转换保存的权重路径,为初始加载的权重,如无初始权重则随机初始化 |

NO.4 推理​​​​​​​

复制代码
cd MindSpeed-LLMbash tests/0day/glm-z1-9b-0414/generate_glm4_z1_9b_0414_ptd.sh

用户需要根据实际情况修改脚本中以下变量

|----------------|-----------------|
| 变量名 | 含义 |
| MASTER_ADDR | 多机情况下主节点IP |
| NODE_RANK | 多机下,各机对应节点序号0-8 |
| CHECKPOINT | 训练保存的权重路径 |
| TOKENIZER_PATH | tokenizer目录 |

NO.5 评估​​​​​​​

复制代码
cd MindSpeed-LLMbash tests/0day/glm-z1-9b-0414/evaluate_glm4_z1_9b_0414_ptd.sh

用户需要根据实际情况修改脚本中以下变量

|----------------|-----------------------------------|
| 变量名 | 含义 |
| MASTER_ADDR | 多机情况下主节点IP |
| NODE_RANK | 多机下,各机对应节点序号0-8 |
| CKPT_SAVE_DIR | 训练中权重保存路径 |
| DATA_PATH | 数据预处理后的数据路径 |
| TOKENIZER_PATH | tokenizer目录 |
| CKPT_LOAD_DIR | 权重转换保存的权重路径,为初始加载的权重,如无初始权重则随机初始化 |

欢迎体验

欢迎大家下载体验GLM-4-0414,也欢迎广大开发者在模型评论区留言交流!

相关推荐
却道天凉_好个秋4 小时前
OpenCV(二十一):HSV与HSL
人工智能·opencv·计算机视觉
从后端到QT4 小时前
标量-向量-矩阵-基础知识
人工智能·机器学习·矩阵
新智元4 小时前
65 岁图灵巨头离职创业!LeCun 愤然与小扎决裂,Meta 巨震
人工智能·openai
机器之心4 小时前
全球第二、国内第一!钉钉发布DeepResearch多智能体框架,已在真实企业部署
人工智能·openai
新智元5 小时前
翻译界的 ChatGPT 时刻!Meta 发布新模型,几段示例学会冷门新语言
人工智能·openai
沉默媛5 小时前
什么是Hinge损失函数
人工智能·损失函数
北青网快讯5 小时前
声网AI技术赋能,智能客服告别机械式应答
人工智能
机器之心5 小时前
TypeScript超越Python成GitHub上使用最广语言,AI是主要驱动力
人工智能·openai
nju_spy5 小时前
周志华《机器学习导论》第 15 章 规则学习(符号主义学习)
人工智能·机器学习·数理逻辑·序贯覆盖·规则学习·ripper·一阶规则学习
许泽宇的技术分享5 小时前
当 AI 工作流需要“人类智慧“:深度解析 Microsoft Agent Framework 的人工接入机制
人工智能·microsoft