Python打卡训练营Day40

DAY 40 训练和测试的规范写法

知识点回顾:

  1. 彩色和灰度图片测试和训练的规范写法:封装在函数中
  2. 展平操作:除第一个维度batchsize外全部展平
  3. dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout

作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具
from torchvision import datasets, transforms # torchvision 是一个用于计算机视觉的库,datasets 和 transforms 是其中的模块
import matplotlib.pyplot as plt
import warnings
# 忽略警告信息
warnings.filterwarnings("ignore")
# 设置随机种子,确保结果可复现
torch.manual_seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

# 1. 数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),  # 转换为张量并归一化到[0,1]
    transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
])

# 2. 加载MNIST数据集
train_dataset = datasets.MNIST(
    root='./data',
    train=True,
    download=True,
    transform=transform
)

test_dataset = datasets.MNIST(
    root='./data',
    train=False,
    transform=transform
)

# 3. 创建数据加载器
batch_size = 64  # 每批处理64个样本
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 4. 定义模型、损失函数和优化器
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.flatten = nn.Flatten()  # 将28x28的图像展平为784维向量
        self.layer1 = nn.Linear(784, 128)  # 第一层:784个输入,128个神经元
        self.relu = nn.ReLU()  # 激活函数
        self.layer2 = nn.Linear(128, 10)  # 第二层:128个输入,10个输出(对应10个数字类别)
        
    def forward(self, x):
        x = self.flatten(x)  # 展平图像
        x = self.layer1(x)   # 第一层线性变换
        x = self.relu(x)     # 应用ReLU激活函数
        x = self.layer2(x)   # 第二层线性变换,输出logits
        return x

# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)

# from torchsummary import summary  # 导入torchsummary库
# print("\n模型结构信息:")
# summary(model, input_size=(1, 28, 28))  # 输入尺寸为MNIST图像尺寸

criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):
    model.train()  # 设置为训练模式
    
    # 新增:记录每个 iteration 的损失
    all_iter_losses = []  # 存储所有 batch 的损失
    iter_indices = []     # 存储 iteration 序号(从1开始)
    
    for epoch in range(epochs):
        running_loss = 0.0
        correct = 0
        total = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            # enumerate() 是 Python 内置函数,用于遍历可迭代对象(如列表、元组)并同时获取索引和值。
            # batch_idx:当前批次的索引(从 0 开始)
            # (data, target):当前批次的样本数据和对应的标签,是一个元组,这是因为dataloader内置的getitem方法返回的是一个元组,包含数据和标签。
            # 只需要记住这种固定写法即可
            #data, target = data.to(device), target.to(device)  # 移至GPU(如果可用)
            
            optimizer.zero_grad()  # 梯度清零
            output = model(data)  # 前向传播
            loss = criterion(output, target)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 更新参数
            
            # 记录当前 iteration 的损失(注意:这里直接使用单 batch 损失,而非累加平均)
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)  # iteration 序号从1开始
            
            # 统计准确率和损失
            running_loss += loss.item() #将loss转化为标量值并且累加到running_loss中,计算总损失
            _, predicted = output.max(1) # output:是模型的输出(logits),形状为 [batch_size, 10](MNIST 有 10 个类别)
            # 获取预测结果,max(1) 返回每行(即每个样本)的最大值和对应的索引,这里我们只需要索引
            total += target.size(0) # target.size(0) 返回当前批次的样本数量,即 batch_size,累加所有批次的样本数,最终等于训练集的总样本数
            correct += predicted.eq(target).sum().item() # 返回一个布尔张量,表示预测是否正确,sum() 计算正确预测的数量,item() 将结果转换为 Python 数字
            
            
            # 每100个批次打印一次训练信息(可选:同时打印单 batch 损失)
            if (batch_idx + 1) % 100 == 0:
                print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                    f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
        
        # 测试、打印 epoch 结果
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        epoch_test_loss, epoch_test_acc = test(model, test_loader, criterion, device)
        
        print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
    
    # 绘制所有 iteration 的损失曲线
    plot_iter_losses(all_iter_losses, iter_indices)
    # 保留原 epoch 级曲线(可选)
    plot_metrics(train_losses, test_losses, train_accuracies, test_accuracies, epochs)
    
    return epoch_test_acc  # 返回最终测试准确率
# 6. 测试模型(不变)
def test(model, test_loader, criterion, device):
    model.eval()  # 设置为评估模式
    test_loss = 0
    correct = 0
    total = 0
    
    with torch.no_grad():  # 不计算梯度,节省内存和计算资源
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += criterion(output, target).item()
            
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
    
    avg_loss = test_loss / len(test_loader)
    accuracy = 100. * correct / total
    return avg_loss, accuracy  # 返回损失和准确率
# 7. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('每个 Iteration 的训练损失')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()
# 8. 执行训练和测试(设置 epochs=2 验证效果)
epochs = 2  
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

#color
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np

# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 1. 数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),                # 转换为张量
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
])

# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
    root='./data',
    train=True,
    download=True,
    transform=transform
)

test_dataset = datasets.CIFAR10(
    root='./data',
    train=False,
    transform=transform
)

# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 4. 定义MLP模型(适应CIFAR-10的输入尺寸)
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.flatten = nn.Flatten()  # 将3x32x32的图像展平为3072维向量
        self.layer1 = nn.Linear(3072, 512)  # 第一层:3072个输入,512个神经元
        self.relu1 = nn.ReLU()
        self.dropout1 = nn.Dropout(0.2)  # 添加Dropout防止过拟合
        self.layer2 = nn.Linear(512, 256)  # 第二层:512个输入,256个神经元
        self.relu2 = nn.ReLU()
        self.dropout2 = nn.Dropout(0.2)
        self.layer3 = nn.Linear(256, 10)  # 输出层:10个类别
        
    def forward(self, x):
        # 第一步:将输入图像展平为一维向量
        x = self.flatten(x)  # 输入尺寸: [batch_size, 3, 32, 32] → [batch_size, 3072]
        
        # 第一层全连接 + 激活 + Dropout
        x = self.layer1(x)   # 线性变换: [batch_size, 3072] → [batch_size, 512]
        x = self.relu1(x)    # 应用ReLU激活函数
        x = self.dropout1(x) # 训练时随机丢弃部分神经元输出
        
        # 第二层全连接 + 激活 + Dropout
        x = self.layer2(x)   # 线性变换: [batch_size, 512] → [batch_size, 256]
        x = self.relu2(x)    # 应用ReLU激活函数
        x = self.dropout2(x) # 训练时随机丢弃部分神经元输出
        
        # 第三层(输出层)全连接
        x = self.layer3(x)   # 线性变换: [batch_size, 256] → [batch_size, 10]
        
        return x  # 返回未经过Softmax的logits

# 检查GPU是否可用
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 初始化模型
model = MLP()
#model = model.to(device)  # 将模型移至GPU(如果可用)

criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):
    model.train()  # 设置为训练模式
    
    # 记录每个 iteration 的损失
    all_iter_losses = []  # 存储所有 batch 的损失
    iter_indices = []     # 存储 iteration 序号
    
    for epoch in range(epochs):
        running_loss = 0.0
        correct = 0
        total = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)  # 移至GPU
            
            optimizer.zero_grad()  # 梯度清零
            output = model(data)  # 前向传播
            loss = criterion(output, target)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 更新参数
            
            # 记录当前 iteration 的损失
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
            
            # 统计准确率和损失
            running_loss += iter_loss
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
            
            # 每100个批次打印一次训练信息
            if (batch_idx + 1) % 100 == 0:
                print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                    f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
        
        # 计算当前epoch的平均训练损失和准确率
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        
        # 测试阶段
        model.eval()  # 设置为评估模式
        test_loss = 0
        correct_test = 0
        total_test = 0
        
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += criterion(output, target).item()
                _, predicted = output.max(1)
                total_test += target.size(0)
                correct_test += predicted.eq(target).sum().item()
        
        epoch_test_loss = test_loss / len(test_loader)
        epoch_test_acc = 100. * correct_test / total_test
        
        print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
    
    # 绘制所有 iteration 的损失曲线
    plot_iter_losses(all_iter_losses, iter_indices)
    
    return epoch_test_acc  # 返回最终测试准确率

# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('每个 Iteration 的训练损失')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()

# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

# # 保存模型
# torch.save(model.state_dict(), 'cifar10_mlp_model.pth')
# # print("模型已保存为: cifar10_mlp_model.pth")

# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

此时你会发现MLP(多层感知机)在图像任务上表现较差(即使增加深度和轮次也只能达到 50-55% 准确率),主要原因与图像数据的空间特性和MLP 的结构缺陷密切相关。

  1. MLP 的每一层都是全连接层,输入图像会被展平为一维向量(如 CIFAR-10 的 32x32x3 图像展平为 3072 维向量)。图像中相邻像素通常具有强相关性(如边缘、纹理),但 MLP 将所有像素视为独立特征,无法利用局部空间结构。例如,识别 "汽车轮胎" 需要邻近像素的组合信息,而 MLP 需通过大量参数单独学习每个像素的关联,效率极低。

  2. 深层 MLP 的参数规模呈指数级增长,容易过拟合。

所以我们接下来将会学习CNN架构,CNN架构的参数规模相对较小,且训练速度更快,而且CNN架构可以解决图像识别问题,而MLP不能。
@浙大疏锦行-CSDN博客

相关推荐
华院计算13 分钟前
华院计算出席信创论坛,分享AI教育创新实践并与燧原科技共同推出教育一体机
人工智能·科技·百度
深兰科技15 分钟前
深兰科技董事长陈海波受邀出席2025苏商高质量发展(常州)峰会,共话AI驱动产业升级
人工智能·mongodb·intellij-idea·hbase·flume·新质生产力·深兰科技
亿牛云爬虫专家17 分钟前
智能嗅探AJAX触发:机器学习在动态渲染中的创新应用
机器学习·ajax·爬虫代理·代理ip·嗅探·新闻·www.toutiao.com
说私域18 分钟前
基于开源AI大模型AI智能名片S2B2C商城小程序源码的销售环节数字化实现路径研究
人工智能·小程序·开源·零售
乌鸦94421 分钟前
《STL--stack 和 queue 的使用及其底层实现》
开发语言·c++·priority_queue·适配器stack、queue
Chef_Chen33 分钟前
从0开始学习R语言--Day12--泊松分布
开发语言·学习·r语言
廿二松柏木36 分钟前
MATLAB实现井字棋
开发语言·matlab
小智学长 | 嵌入式1 小时前
SOC-ESP32S3部分:22-分区表
开发语言·单片机·esp32
gou123412341 小时前
【Golang进阶】第八章:并发编程基础——从Goroutine调度到Channel通信实战
开发语言·后端·golang