AI炼丹日志-24 - MCP 自动操作 提高模型上下文能力 Cursor + Sequential Thinking Server Memory

点一下关注吧!!!非常感谢!!持续更新!!!

Java篇:

  • MyBatis 更新完毕
  • 目前开始更新 Spring,一起深入浅出!

大数据篇 300+:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(已更完)
  • ClickHouse(已更完)
  • Kudu(已更完)
  • Druid(已更完)
  • Kylin(已更完)
  • Elasticsearch(已更完)
  • DataX(已更完)
  • Tez(已更完)
  • 数据挖掘(已更完)
  • Prometheus(已更完)
  • Grafana(已更完)
  • 离线数仓(已更完)
  • 实时数仓(正在更新...)
  • Spark MLib (正在更新...)

背景情况

在以往的开发任务中,我们发现随着项目规模的扩大,AI 模型容易出现"前后不一致"的问题:它在处理后续逻辑时,常常遗忘前面的上下文,从而引发新的 Bug。

本质上,这是因为模型的上下文窗口存在限制。早期 GPT-4 仅支持 4K 上下文,后来 GPT-4 Turbo 提升到了 128K,而如今部分前沿模型已支持高达 1M 的上下文长度。

当前,行业内的技术演进主要集中在两个方向:一是不断扩展上下文长度,二是持续增加模型参数量。但无论上下文有多大,总会有装不下的内容;即便模型参数再庞大,也依然可能生成不准确、不连贯的结果。

因此,为了解决这一类"遗忘"问题,社区逐步发展出一系列策略:从扩大上下文窗口,到引入 RAG(Retrieval-Augmented Generation)与摘要机制;从 Step-by-Step 的逐步推理,到 Chain-of-Thought(思维链)等更复杂的推理结构。这些方法的共同目标,都是延长模型的思考过程、缓存关键信息,以对抗其作为概率模型带来的推理局限。

恰巧在上周的分享会上,有人提到在 AI 协助开发的过程中,经常会遇到"遗忘"或"执行偏差"的问题。我当时也简单分享了几个应对思路。借这个机会,顺便整理一下目前社区中较为标准的解决方案。

Sequential Thinking

项目地址

https://github.com/modelcontextprotocol/servers/tree/main/src/sequentialthinking

能够将复杂的问题拆分成一个个可管理的小步骤,让 AI 可以逐步进行分析和处理。例如,在处理一个复杂的编程任务时,它会把任务分解为多个子任务,如先确定算法框架,再处理数据输入输出,最后进行代码优化等。

配置方式

MCP的配置方式老生常谈了,全部略过。

shell 复制代码
npx -y @modelcontextprotocol/server-sequential-thinking

JSON内容如下:

json 复制代码
{
    "mcpServers": {
        "SequentialThinking": {
            "command": "npx",
            "args": ["-y", "@modelcontextprotocol/server-sequential-thinking"]    
        }
    }   
}

配置结果如下:

确保Cursor中的状态是正常的:

使用方式

对于一些复杂问题,可以使用Sequential Thinking服务,将复杂问题分解为小的问题,逐个解决。同时每调用一次,都可以从thought中获取到LLM当前的思考过程以及采取的方法,有时还会提供多种方案,我们可以通过再次提问,实现对于方案的选取以及之前思考过程的调整。

shell 复制代码
请你使用思考能力,完成XXXXXXX的任务。

这样会调用 Sequential Thinking,对任务进行详细的拆解,避免出现比如:"实现一个购物系统",这样宽泛的需求而大模型无法理解的问题。

Server Memory

项目地址

https://github.com/modelcontextprotocol/servers/tree/main/src/memory

能够让 AI 记住之前的信息和交互内容,在处理后续任务时可以调用这些记忆,从而更连贯地进行分析和处理。例如,在进行多轮对话的编程对话时,AI 可以记住之前用户提出的代码问题和已解决的部分,在后续交流中基于这些记忆给出更合适的建议和指导。

配置方式

MCP配置略过

shell 复制代码
npx -y @modelcontextprotocol/server-memory

一般都是将思考和记忆放到一起使用,对应的JSON如下:

shell 复制代码
{
    "mcpServers": {
        "SequentialThinking": {
            "command": "npx",
            "args": ["-y", "@modelcontextprotocol/server-sequential-thinking"]    
        },
        "ServerMemory": {
            "command": "npx",
            "args": ["-y", "@modelcontextprotocol/server-memory"]
        }
    }
}

配置完的结果如下:

使用方式

对于一些需要多轮交互且依赖之前信息的复杂问题,可以使用 Server Memory 服务。比如在进行项目需求分析时,用户不断补充和修改需求,AI 能够记住之前的需求内容,在后续分析中综合考虑,给出更全面准确的分析结果。

随便测试一个结果:

可以看到思考完成后,会进行缓存:

相关推荐
Q741_1474 分钟前
C++ 面试基础考点 模拟题 力扣 38. 外观数列 题解 每日一题
c++·算法·leetcode·面试·模拟
产业家5 分钟前
Sora 后思考:从 AI 工具到 AI 平台,产业 AGI 又近了一步
人工智能·chatgpt·agi
量化交易曾小健(金融号)9 分钟前
人大计算金融课程名称:《机器学习》(题库)/《大数据与机器学习》(非题库) 姜昊教授
人工智能
潘达斯奈基~10 分钟前
spark性能优化1:通过依赖关系重组优化Spark性能:宽窄依赖集中处理实践
大数据·性能优化·spark
IT_陈寒16 分钟前
Redis 性能翻倍的 5 个隐藏技巧,99% 的开发者都不知道第3点!
前端·人工智能·后端
W_chuanqi19 分钟前
RDEx:一种效果驱动的混合单目标优化器,自适应选择与融合多种算子与策略
人工智能·算法·机器学习·性能优化
好奇龙猫20 分钟前
[AI学习:SPIN -win-安装SPIN-工具过程 SPIN win 电脑安装=accoda 环境-第四篇:代码修复]
人工智能·学习
JosieBook28 分钟前
【数据库】时序数据库选型指南:在大数据与工业4.0时代,为何 Apache IoTDB 成为智慧之选?
大数据·数据库·时序数据库
Pocker_Spades_A29 分钟前
AI搜索自由:Perplexica+cpolar构建你的私人知识引擎
人工智能
~kiss~30 分钟前
图像的脉冲噪声和中值滤波
图像处理·人工智能·计算机视觉