Pytorch的梯度控制

在之前的实验中遇到一些问题,因为之前计算资源有限,我就想着微调其中一部分参数做,于是我误打误撞使用了with torch.no_grad,可是发现梯度传递不了,于是写下此文来记录梯度控制的两个方法与区别。

在PyTorch中,控制梯度计算对于模型训练和微调至关重要。这里区分两个常用方法:

1. tensor.requires_grad = False

  • 目标: 单个张量(通常是模型参数 nn.Parameter)。
  • 行为:
    • "参数冻结" :这个张量本身不会计算梯度 (.gradNone)。
    • "参数不更新" :优化器不会更新这个张量。
    • "梯度可穿透" :如果它参与的运算的输入是 requires_grad=True 的,梯度仍然会通过这个运算传递给输入。它不阻碍梯度流向更早的可训练层。
  • 场景:
    • 微调:冻结预训练模型的某些层,只训练其他层。
    • 例子:pretrained_layer.weight.requires_grad = False

2. with torch.no_grad():

  • 目标: 一个代码块 (with 语句块内部)。

  • 行为:

    • "全局梯度关闭" (块内):块内所有新创建的张量默认 requires_grad=False
    • "不记录计算图" :块内的运算不被追踪,不构建反向传播所需的计算图。
    • "梯度截断" :梯度流到这个块的边界就会停止,无法通过块内的操作继续反向传播
  • 场景:

    • 模型评估/推理 (Inference/Evaluation):不需要梯度,节省内存和计算。
    • 执行不需要梯度的任何计算。
    • 例子:
    python 复制代码
     with torch.no_grad():
         outputs = model(inputs)
         # ...其他评估代码

核心区别速记:

特性 requires_grad=False with torch.no_grad():
谁不更新? 这个参数自己 (块内)没人更新
梯度能过吗? 能过! 不能过! (被截断)
影响范围? 单个张量 整个代码块

一句话总结:

  • 想让某个参数不更新但梯度能流过 ,用 requires_grad=False
  • 想让一段代码完全不计算梯度也不让梯度流过 ,用 with torch.no_grad()

搞清楚这两者的区别,能在PyTorch中更灵活地控制模型的训练过程!

相关推荐
DP+GISer1 天前
基于站点数据进行遥感机器学习参数反演-以XGBOOST反演LST为例(附带数据与代码)试读
人工智能·python·机器学习·遥感与机器学习
boonya1 天前
Langchain 和LangGraph 为何是AI智能体开发的核心技术
人工智能·langchain
元宇宙时间1 天前
DID联盟:Web3数字主权基础设施的战略构建
人工智能·web3·区块链
点云SLAM1 天前
弱纹理图像特征匹配算法推荐汇总
人工智能·深度学习·算法·计算机视觉·机器人·slam·弱纹理图像特征匹配
mwq301231 天前
旋转位置编码RoPE:用旋转艺术,解开 Transformer 的位置之谜
人工智能
赵得C1 天前
人工智能的未来之路:华为全栈技术链与AI Agent应用实践
人工智能·华为
糖葫芦君1 天前
25-GRPO IS SECRETLY A PROCESS REWARD MODEL
人工智能·大模型
俊男无期1 天前
【AI入门】通俗易懂讲AI(初稿)
人工智能
工业互联网专业1 天前
基于协同过滤算法的小说推荐系统_django+spider
python·django·毕业设计·源码·课程设计·spider·协同过滤算法