神经网络与深度学习(第一章)

1.神经网络、深度学习与人工智能的之间的关系

神经网络是实现深度学习的基础技术,深度学习是人工智能的核心领域

2.深度学习中常见的避免过拟合的方法

(1)数据增强;(2)L1 L2正则化;(3)集成学习;(4)早停机制;(5)Dropout

3.什么是机器学习,常见的机器学习类型有哪些

机器学习等价于一个映射函数,指从有限的观测数据当中学习出具有一般性的规律,并利用这些规律对未知数据进行预测的方法

机器学习类型:(1)监督学习:指训练集为人工标注的数据,从而学习特征属性与标签之间的内在关系,主要用于回归,分类(2)半监督学习:指训练集有一部分是人工标注的一部分不是,支持向量机(3)无监督学习:训练集无人工标注,聚类,降维,密度估计(4)强化学习:智能体与外部环境交互并从中获得最大的奖赏,围棋

4.机器学习和深度学习的步骤

机器学习:

数据获取---数据预处理(处理异常、缺失值等)---特征提取---特征转换---模型选择---模型训练---预测---输出结果

其中数据预处理到特征转换可以简称为特征工程,十分依赖人去做这个事情

深度学习

数据获取---底层特征---中层特征---高层特征---模型选择---训练模型---预测---输出结果

其中与机器学习的特征工程步骤相比,深度学习的属性特征学习全交给神经网络自动学习

5.人工智能的发展历史

推理期(1956年达特茅斯会议提出人工智能)----知识期(专家系统的兴起)----学习期(深度学习的流行与发展)

6.人工神经元和人工神经网络概念

人工神经元:模型生物神经元的数学模型,人工神经网络的基本单元;输入------权重------计算(加上偏置)------激活------输出;本质就是输入------加权处理------非线性转换

人工神经网络:由大量神经元以及它们之间的有向连接构成且具有并行分布结构;输入层------隐藏层------输出层

7.神经网络发展历史

模型提出------冰河期------反向传播算法引起复兴------流行度降低------深度学习的崛起

相关推荐
Java后端的Ai之路9 分钟前
【RAG技术】- RAG系统调优手段之高效召回(通俗易懂附案例)
人工智能·rag·rag系统·召回·rag调优
草莓熊Lotso11 分钟前
Linux 基础 IO 初步解析:从 C 库函数到系统调用,理解文件操作本质
linux·运维·服务器·c语言·数据库·c++·人工智能
Cx330❀16 分钟前
从零实现Shell命令行解释器:原理与实战(附源码)
大数据·linux·数据库·人工智能·科技·elasticsearch·搜索引擎
Niuguangshuo7 小时前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火7 小时前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz25887827 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
芝士爱知识a7 小时前
2026年AI面试软件推荐
人工智能·面试·职场和发展·大模型·ai教育·考公·智蛙面试
Li emily7 小时前
解决港股实时行情数据 API 接入难题
人工智能·python·fastapi
Aaron15887 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
J_Xiong01178 小时前
【Agents篇】04:Agent 的推理能力——思维链与自我反思
人工智能·ai agent·推理