神经网络与深度学习(第一章)

1.神经网络、深度学习与人工智能的之间的关系

神经网络是实现深度学习的基础技术,深度学习是人工智能的核心领域

2.深度学习中常见的避免过拟合的方法

(1)数据增强;(2)L1 L2正则化;(3)集成学习;(4)早停机制;(5)Dropout

3.什么是机器学习,常见的机器学习类型有哪些

机器学习等价于一个映射函数,指从有限的观测数据当中学习出具有一般性的规律,并利用这些规律对未知数据进行预测的方法

机器学习类型:(1)监督学习:指训练集为人工标注的数据,从而学习特征属性与标签之间的内在关系,主要用于回归,分类(2)半监督学习:指训练集有一部分是人工标注的一部分不是,支持向量机(3)无监督学习:训练集无人工标注,聚类,降维,密度估计(4)强化学习:智能体与外部环境交互并从中获得最大的奖赏,围棋

4.机器学习和深度学习的步骤

机器学习:

数据获取---数据预处理(处理异常、缺失值等)---特征提取---特征转换---模型选择---模型训练---预测---输出结果

其中数据预处理到特征转换可以简称为特征工程,十分依赖人去做这个事情

深度学习

数据获取---底层特征---中层特征---高层特征---模型选择---训练模型---预测---输出结果

其中与机器学习的特征工程步骤相比,深度学习的属性特征学习全交给神经网络自动学习

5.人工智能的发展历史

推理期(1956年达特茅斯会议提出人工智能)----知识期(专家系统的兴起)----学习期(深度学习的流行与发展)

6.人工神经元和人工神经网络概念

人工神经元:模型生物神经元的数学模型,人工神经网络的基本单元;输入------权重------计算(加上偏置)------激活------输出;本质就是输入------加权处理------非线性转换

人工神经网络:由大量神经元以及它们之间的有向连接构成且具有并行分布结构;输入层------隐藏层------输出层

7.神经网络发展历史

模型提出------冰河期------反向传播算法引起复兴------流行度降低------深度学习的崛起

相关推荐
正脉科工 CAE仿真27 分钟前
抗震计算 | 基于随机振动理论的结构地震响应计算
人工智能
看到我,请让我去学习29 分钟前
OpenCV编程- (图像基础处理:噪声、滤波、直方图与边缘检测)
c语言·c++·人工智能·opencv·计算机视觉
码字的字节31 分钟前
深度解析Computer-Using Agent:AI如何像人类一样操作计算机
人工智能·computer-using·ai操作计算机·cua
冬天给予的预感1 小时前
DAY 54 Inception网络及其思考
网络·python·深度学习
说私域2 小时前
互联网生态下赢家群体的崛起与“开源AI智能名片链动2+1模式S2B2C商城小程序“的赋能效应
人工智能·小程序·开源
董厂长5 小时前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
G皮T8 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼8 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间9 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享9 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频