基于mediapipe深度学习的虚拟画板系统python源码

目录

1.前言

2.算法运行效果图预览

3.算法运行软件版本

4.部分核心程序

5.算法仿真参数

6.算法理论概述

7.参考文献

8.算法完整程序工程


1.前言

虚拟画板系统基于计算机视觉与深度学习技术,通过摄像头捕获用户手部动作,利用 MediaPipe框架实现手部关键点检测与手势识别,进而将手部运动转化为虚拟画笔操作。系统主要流程包括:图像采集→手部关键点检测→手势语义解析→坐标映射→绘图逻辑执行

2.算法运行效果图预览

(完整程序运行后无水印)

3.算法运行软件版本

人工智能算法python程序运行环境安装步骤整理_本地ai 运行 python-CSDN博客

4.部分核心程序

复制代码
 def  findHands(self,img,draw=True):
        imgRGB=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
        self.results=hands.process(imgRGB)

        if self.results.multi_hand_landmarks:
            #get the information of each hand
            for handLms in self.results.multi_hand_landmarks:
                if draw:
                    self.mpDraw.draw_landmarks(img,handLms,self.mpHands.HAND_CONNECTIONS)
        return img
    
    def findPosition(self,img,handNo=0,draw=True):
        self.lmList=[]
        if self.results.multi_hand_landmarks:
            myHand=self.results.multi_hand_landmarks[handNo]
            for id,lm in enumerate(myHand.landmark):
              
                h,w,c=img.shape
                cx,cy=int(lm.x*w),int(lm.y*h)
             
                self.lmList.append([id,cx,cy])
                if draw:
                    cv2.circle(img,(cx,cy),8,(255,0,0),cv2.FILLED)
        return self.lmList    

0Y_007

5.算法仿真参数

指尖检测器,设置检测置信度为0.8

初始化摄像头

cap=cv2.VideoCapture(0)

cap.set(3,1280)

cap.set(4,720)

pens=5#画笔宽度

erasers=100#橡皮宽度

6.算法理论概述

虚拟画板系统基于计算机视觉与深度学习技术,通过摄像头捕获用户手部动作,利用 MediaPipe框架实现手部关键点检测与手势识别,进而将手部运动转化为虚拟画笔操作。系统主要流程包括:图像采集→手部关键点检测→手势语义解析→坐标映射→绘图逻辑执行

MediaPipe 的Hands模型采用轻量级卷积神经网络(CNN),结合姿态估计(Pose Estimation)与关键点检测(Keypoint Detection)技术,实现实时手部跟踪。模型结构包含:

轻量化主干网络:如 MobileNetV3,用于提取图像特征;

关键点回归头:输出 21 个手部关键点(如指尖、指节)的二维坐标与置信度,坐标值通过归一化处理(范围 [0,1])映射到图像尺寸。

通过分析手部关键点的相对位置关系,定义不同手势语义。例如:

画笔模式:单指(如食指)抬起,其余手指弯曲;

橡皮/画笔选择:两个手指同时伸开,则表示开始选择画笔颜色或者橡皮模式

7.参考文献

1\]陈吴东.基于深度学习的动态手势检测与识别算法研究\[J\].现代信息科技, 2025(8). \[2\]范羽,梁梓康,徐明坤,等.基于MediaPipe手势识别的聋哑人交流系统设计\[J\].轻工科技, 2024, 40(5):99-102. \[3\]孟杰,杨鹏程,杨朝,等.基于Mediapipe的幻影成像装置自然手势交互系统设计\[J\].国外电子测量技术, 2023, 42(3):116-122.DOI:10.19652/j.cnki.femt.2204392. ## 8.算法完整程序工程 **OOOOO** **OOO** **O**

相关推荐
mit6.82433 分钟前
[AI React Web] 包与依赖管理 | `axios`库 | `framer-motion`库
前端·人工智能·react.js
小阿鑫1 小时前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域1 小时前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序
HAPPY酷2 小时前
给纯小白的Python操作 PDF 笔记
开发语言·python·pdf
Tiger Z2 小时前
《动手学深度学习v2》学习笔记 | 1. 引言
pytorch·深度学习·ai编程
GoGeekBaird2 小时前
GoHumanLoopHub开源上线,开启Agent人际协作新方式
人工智能·后端·github
Jinkxs2 小时前
测试工程师的AI转型指南:从工具使用到测试策略重构
人工智能·重构
传奇开心果编程2 小时前
【传奇开心果系列】Flet框架实现的家庭记账本示例自定义模板
python·学习·ui·前端框架·自动化
别惹CC3 小时前
Spring AI 进阶之路01:三步将 AI 整合进 Spring Boot
人工智能·spring boot·spring
王者鳜錸4 小时前
PYTHON让繁琐的工作自动化-PYTHON基础
python·microsoft·自动化