动态规划十大经典题目整理
- 0-1 背包问题(0-1 Knapsack Problem)
- LeetCode题号:无直接对应
- 洛谷OJ题号:P1048
- 状态转移方程:dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
- C++代码模板:
cpp
int dp[capacity + 1] = {0};
for (int i = 0; i < n; ++i) {
for (int j = capacity; j >= weight[i]; --j) {
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
- 完全背包问题(Complete Knapsack Problem)
- LeetCode题号:322
- 洛谷OJ题号:P1616
- 状态转移方程:dp[j] = min(dp[j], dp[j - coins[i]] + 1)
- C++代码模板:
cpp
vector<int> dp(amount + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i < coins.size(); ++i) {
for (int j = coins[i]; j <= amount; ++j) {
if (dp[j - coins[i]] != INT_MAX) {
dp[j] = min(dp[j], dp[j - coins[i]] + 1);
}
}
}
- 编辑距离(Edit Distance)
-
LeetCode题号:72
-
洛谷OJ题号:P2758
-
状态转移方程:
- 若 word1[i-1] == word2[j-1]:dp[i][j] = dp[i-1][j-1]
- 否则:dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1
-
C++代码模板:
cpp
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
for (int i = 0; i <= m; ++i) dp[i][0] = i;
for (int j = 0; j <= n; ++j) dp[0][j] = j;
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (word1[i - 1] == word2[j - 1])
dp[i][j] = dp[i - 1][j - 1];
else
dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}
}
- 最长公共子序列(Longest Common Subsequence)
-
LeetCode题号:1143
-
洛谷OJ题号:P1439
-
状态转移方程:
- 若 text1[i-1] == text2[j-1]:dp[i][j] = dp[i-1][j-1] + 1
- 否则:dp[i][j] = max(dp[i-1][j], dp[i][j-1])
-
C++代码模板:
cpp
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (text1[i - 1] == text2[j - 1])
dp[i][j] = dp[i - 1][j - 1] + 1;
else
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
- 最长递增子序列(Longest Increasing Subsequence)
- LeetCode题号:300
- 洛谷OJ题号:P1439
- 状态转移方程:dp[i] = max(dp[j] + 1), j < i 且 nums[j] < nums[i]
- C++代码模板:
cpp
vector<int> dp(n, 1);
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[i] > nums[j])
dp[i] = max(dp[i], dp[j] + 1);
}
}
- 乘积最大子数组(Maximum Product Subarray)
- LeetCode题号:152
- 洛谷OJ题号:无直接对应
- 状态转移方程:记录当前最大值与最小值
- C++代码模板:
cpp
int max_prod = nums[0], min_prod = nums[0], result = nums[0];
for (int i = 1; i < n; ++i) {
if (nums[i] < 0) swap(max_prod, min_prod);
max_prod = max(nums[i], max_prod * nums[i]);
min_prod = min(nums[i], min_prod * nums[i]);
result = max(result, max_prod);
}
- 不同路径(Unique Paths)
- LeetCode题号:62
- 洛谷OJ题号:P1002
- 状态转移方程:dp[i][j] = dp[i-1][j] + dp[i][j-1]
- C++代码模板:
cpp
vector<vector<int>> dp(m, vector<int>(n, 1));
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
- 最小路径和(Minimum Path Sum)
- LeetCode题号:64
- 洛谷OJ题号:P1216
- 状态转移方程:dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
- C++代码模板:
cpp
vector<vector<int>> dp(m, vector<int>(n, 0));
dp[0][0] = grid[0][0];
for (int i = 1; i < m; ++i) dp[i][0] = dp[i - 1][0] + grid[i][0];
for (int j = 1; j < n; ++j) dp[0][j] = dp[0][j - 1] + grid[0][j];
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
- 打家劫舍(House Robber)
- LeetCode题号:198
- 洛谷OJ题号:P1980(近似)
- 状态转移方程:dp[i] = max(dp[i-2] + nums[i], dp[i-1])
- C++代码模板:
cpp
if (nums.empty()) return 0;
if (nums.size() == 1) return nums[0];
vector<int> dp(nums.size());
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
for (int i = 2; i < nums.size(); ++i) {
dp[i] = max(dp[i - 1], dp[i - 2] + nums[i]);
}
- 最长有效括号(Longest Valid Parentheses)
- LeetCode题号:32
- 洛谷OJ题号:无
- 状态转移方程:复杂,涉及匹配与回溯逻辑
- C++代码模板:
cpp
int max_len = 0;
vector<int> dp(s.length(), 0);
for (int i = 1; i < s.length(); ++i) {
if (s[i] == ')') {
if (s[i - 1] == '(')
dp[i] = (i >= 2 ? dp[i - 2] : 0) + 2;
else if (i - dp[i - 1] > 0 && s[i - dp[i - 1] - 1] == '(')
dp[i] = dp[i - 1] + ((i - dp[i - 1]) >= 2 ? dp[i - dp[i - 1] - 2] : 0) + 2;
max_len = max(max_len, dp[i]);
}
}