OPenCV CUDA模块目标检测----- HOG 特征提取和目标检测类cv::cuda::HOG

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::cuda::HOG 是 OpenCV 的 CUDA 模块中对 HOG 特征提取和目标检测 提供的 GPU 实现。它与 CPU 版本的 cv::HOGDescriptor 类似,但利用了 GPU 的并行计算能力以提高性能。

公共成员函数

创建与初始化

函数 描述
static Ptr cv::cuda::HOG::create() 创建一个默认配置的 HOG 对象。
void setSVMDetector(InputArray _svmDetector) 设置 SVM 分类器权重向量,用于检测特定目标(如行人)。

参数设置(与 HOG 特征相关)

函数 描述
void setWinSize(Size winSize) 设置检测窗口大小(必须是 cell 大小的整数倍)。
void setBlockSize(Size blockSize) 设置 block 的大小(单位:像素)。
void setCellSize(Size cellSize) 设置 cell 的大小(单位:像素)。
void setBinCount(int nBins) 设置每个 cell 的方向直方图 bin 数量。
void setBlockStride(Size blockStride) 设置 block 移动步长(单位:像素)。
void setDerivativeAperture(int derivAperture) 设置图像平滑/导数计算的孔径大小。
void setWinSigma(double winSigma) 高斯窗口的标准差。
void setHistogramNormType(int histogramNormType) 设置直方图归一化方式(L2Hys, L1, L1Sqrt, L2)。
void setL2HysNormalization(bool l2HysNormalization) 是否启用 L2-Hys 归一化。
void setGammaCorrection(bool gammaCorrection) 是否启用伽马校正。
void setNumLevels(int numLevels) 设置金字塔层数。

检测方法

函数 描述
void detectMultiScale(InputArray img, OutputArray foundLocations, double hitThreshold = 0, Size winStride = Size(), Size padding = Size()) 在图像中多尺度检测目标,并返回检测到的位置(矩形框)。

示例代码(GPU 上的行人检测)

cpp 复制代码
#include <opencv2/cudaobjdetect.hpp>
#include <opencv2/opencv.hpp>

int main()
{
    // 创建 HOG 对象
    cv::Ptr< cv::cuda::HOG > hog = cv::cuda::HOG::create();

    // 设置 SVM 分类器(行人检测)
    std::vector< float > detector = cv::HOGDescriptor::getDefaultPeopleDetector();
    hog->setSVMDetector( detector );

    // 读取图像(默认为 BGR 三通道)
    cv::Mat frame = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/00001.jpg" );
    if ( frame.empty() )
    {
        std::cerr << "无法读取图像!" << std::endl;
        return -1;
    }

    // 转换为灰度图(CV_8UC1)
    cv::Mat gray_frame;
    cv::cvtColor( frame, gray_frame, cv::COLOR_BGR2GRAY );

    // 上传到 GPU
    cv::cuda::GpuMat d_frame( gray_frame );

    // 执行检测
    std::vector< cv::Rect > found_locations;
    hog->detectMultiScale( d_frame, found_locations );

    // 绘制检测结果
    for ( const auto& r : found_locations )
    {
        cv::rectangle( frame, r, cv::Scalar( 0, 0, 255 ), 2 );
    }

    cv::imshow( "Pedestrian Detection", frame );
    cv::waitKey( 0 );
    return 0;
}

运行结果

效果仅供演示,要想效果专业一下,得自己去训练模型了。

相关推荐
陈天伟教授3 小时前
人工智能应用- 语言处理:04.统计机器翻译
人工智能·自然语言处理·机器翻译
Dfreedom.3 小时前
图像处理中的对比度增强与锐化
图像处理·人工智能·opencv·锐化·对比度增强
wenzhangli73 小时前
OoderAgent 企业版 2.0 发布的意义:一次生态战略的全面升级
人工智能·开源
AI_56783 小时前
SQL性能优化全景指南:从量子执行计划到自适应索引的终极实践
数据库·人工智能·学习·adb
cyyt3 小时前
深度学习周报(2.2~2.8)
人工智能·深度学习
阿杰学AI3 小时前
AI核心知识92——大语言模型之 Self-Attention Mechanism(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·transformer·自注意力机制
陈天伟教授3 小时前
人工智能应用- 语言处理:03.机器翻译:规则方法
人工智能·自然语言处理·机器翻译
Σίσυφος19004 小时前
PCL 姿态估计 RANSAC + SVD(基于特征匹配)
人工智能·机器学习
Warren2Lynch4 小时前
C4 vs UML:从入门到结合使用的完整指南(含 Visual Paradigm AI 实操)
人工智能·机器学习·uml
Ryan老房4 小时前
智能家居AI-家庭场景物体识别标注实战
人工智能·yolo·目标检测·计算机视觉·ai·智能家居