14.AI搭建preparationのBERT预训练模型进行文本分类

一、回顾:

  1. 对深度学习框架Python2.0进行自然语言处理有了一个基础性的认识
  2. 注意力模型编码器(encoder_layer,用于分类的全连接层dense_layer),抛弃了传统的循环神经网络和卷积神经网络,通过注意力模型将任意位置的两个单词的距离转换成1
  3. 编码器层和全连接层分开,利用训练好的模型作为编码器独立使用,并且根据具体项目接上不同的尾端,以便在运训练好的编码器上通过微调进行训

二、BERT简介:

Bidirectional Encoder Representation From transformer,替代了 word embedding 的新型文字编码方案,BERT 实际有多个encoder block叠加而成,通过使用注意力模型的多个层次来获得文本的特征提取

三、基本架构与应用

1.MLM:随机从输入语料中这闭掉一些单词,然后通过上下文预测该单词

2.NSP:判断句子B是否句子A的上下文

四、使用HUGGING FACE获取BERT与训练模型

1.安装

复制代码
pip install transformers

2.引用

复制代码
import torch
from transformers import BertTokenizer
from transformers import BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
pretrain_model = BertModel.from_pretrained("bert-base-chinese")

3. 运用代码_获取对应文本的TOKEN

3.1('bert-base-chinese'模型)

复制代码
import torch
from transformers import BertTokenizer
from transformers import BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
pretrain_model = BertModel.from_pretrained("bert-base-chinese")

tokens = tokenizer.encode("床前明月光",max_length=12,padding="max_length",truncation=True)
print(tokens)
print("----------------------")
print(tokenizer("床前明月光",max_length=12,padding="max_length",truncation=True))
print("----------------------")
tokens = torch.tensor([tokens]).int()
print(pretrain_model(tokens))

3.2("uer/gpt2-chinese-ancient"模型)

复制代码
import torch
from transformers import BertTokenizer,GPT2Model
model_name = "uer/gpt2-chinese-ancient"
tokenizer = BertTokenizer.from_pretrained(model_name)
pretrain_model = GPT2Model.from_pretrained(model_name)

tokens = tokenizer.encode("春眠不觉晓",max_length=12,padding="max_length",truncation=True)
print(tokens)
print("----------------------")
print(tokenizer("春眠不觉晓",max_length=12,padding="max_length",truncation=True))
print("----------------------")

tokens = torch.tensor([tokens]).int()
print(pretrain_model(tokens))

4.进行文本分类

数据准备>数据处理>模型设计>模型训练

get_data:

model:

train:

finally,随着训练,准确率会越来越高

相关推荐
夕阳染色的坡道几秒前
LineSlam线特征投影融合(Fuse) 中pML->GetLineNormalVector()的理解代码理解
人工智能·opencv·计算机视觉
rengang669 分钟前
502-Spring AI Alibaba React Agent 功能完整案例
人工智能·spring·agent·react·spring ai·ai应用编程
F2的AI学习笔记18 分钟前
AI智能体工具调用终极指南:从Function Calling到MCP的三大方案详解
人工智能
北辰alk18 分钟前
边缘端AI部署全面指南:原理、方案与实战代码
人工智能
噜~噜~噜~24 分钟前
LSTM(Long Short-Term Memory)个人理解
人工智能·lstm·双层lstm·多层lstm
翔云 OCR API28 分钟前
基于深度学习与OCR研发的报关单识别接口技术解析
人工智能·深度学习·ocr
wwlsm_zql33 分钟前
京津冀工业智能体赋能:重构产业链升级新篇章
人工智能·重构
lzjava202444 分钟前
Spring AI实现一个智能客服
java·人工智能·spring
hweiyu001 小时前
数据挖掘 miRNA调节网络的构建(视频教程)
人工智能·数据挖掘
飞哥数智坊1 小时前
AI Coding 新手常见的3大误区
人工智能·ai编程