时序数据库IoTDB的UDF Sample算法在数据监控、故障预防的应用

一、数据监控在工业物联网中的重要性

设备数据监控是工业物联网(IoT)中最为广泛应用的领域之一。通过实时监控工厂机械设备的运行状态,企业能够提前发现设备的潜在故障,从而实现预防性维护与可预测性维护。这一做法不仅能有效提升设备的总体使用效率(OEE),还能为工厂带来显著的降本增效效果。

二、数据监控的具体案例与分析

以工厂A的一个关键超大型加工中心(CNC)为例,该设备突发故障导致整个工厂停产。由于此设备为高价值且独一无二,维修团队不得不三班倒进行紧急抢修,历经48小时才勉强恢复工作,但生产精度下降,不合格产品增多。一周后,从原厂订购的关键部件到位并完成替换,生产才完全恢复。事后复盘发现,若该设备装有监控传感器,本有机会提前发现潜在故障,从而提前订购配件并合理安排维修进度,避免停工带来的巨大经济损失。

在此案例中,尽管人工智能在自动化故障诊断方面展现出巨大潜力,但在现阶段,维修工人及专家的诊断与判断仍至关重要。因此,监控数据的可视化展示变得尤为关键,它能够帮助专家快速捕捉到数据的关键信息,从而做出正确判断。

三、IoTDB在数据可视化中的应用实践

以物联网监控加工中心切削液喷射压力数据为例,展示了IoTDB的UDF Sample算法的实践应用。物联网传感器每秒采集一次切削液的压力数据,通过IoTDB的数据可视化功能,可以清晰地看到数据中存在的快速压力变化,这通常与加工中心的换刀操作相关。

当维修班组人员看到这些数据时,他们首先需要判断这些数据是否正常。一个简单的方法是将当前数据与过去的数据进行对比。通过切换数据显示周期至7天,可以清晰地看出当前数据与过去数据的差异,从而识别出异常。在本例中,通过与现场操作工的沟通,维修专家确定异常是由于切削刀断裂引起的紧急停机事件。

四、传统抽样算法与IoTDB UDF Sample算法的区别

物联网采集的数据是连续不间断的,因此在展示长时间范围的数据时,需要对数据进行抽样以降低数据量。传统抽样算法主要基于时间进行等间距或随机下采样,但这种方法在处理突变数据时容易丢失关键信息。

为了更好地应对异常值检测等故障诊断场景,IoTDB提供了基于最大三角原理的UDF Sample算法。该算法在采样过程中考虑数值部分的变化,计算每个数据点与周围相邻数据点组成的三角形面积,并保留面积最大的点。这种方法能够很好地保留快速变化数据中的关键点,从而获得良好的数据可视化效果。在图示案例中,采用该算法后,12小时中的一小段异常数据能够在7天的抽样数据中得到几乎完整的保留。

相关推荐
TDengine (老段)16 分钟前
杨凌美畅用 TDengine 时序数据库,支撑 500 条产线 2 年历史数据追溯
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
青云交22 分钟前
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用
java·大数据·机器学习·数据存储·模型构建·游戏用户行为分析·游戏平衡优化
葛小白13 小时前
C#数据类型:string简单使用
服务器·数据库·c#
污斑兔3 小时前
MongoDB的$sample是啥?
数据库·mongodb
RE-19013 小时前
《深入浅出统计学》学习笔记(一)
大数据·数学·概率论·统计学·数理统计·知识笔记·深入浅出
马丁的代码日记5 小时前
MySQL InnoDB 行锁与死锁排查实战演示
数据库·mysql
拍客圈6 小时前
数据主站+副站做的设置
数据库
计算机学长felix6 小时前
基于SpringBoot的“面向校园的助力跑腿系统”的设计与实现(源码+数据库+文档+PPT)
数据库·spring boot·后端
赵部长风向标6 小时前
在本地生活赛道,如何打造属于自己的业务护城河?
大数据
青云交7 小时前
Java 大视界 -- Java 大数据在智能教育学习社区互动模式创新与用户活跃度提升中的应用(426)
java·大数据·学习·flink 实时计算·智能教育社区·互动模式创新·用户活跃度