时序数据库IoTDB的UDF Sample算法在数据监控、故障预防的应用

一、数据监控在工业物联网中的重要性

设备数据监控是工业物联网(IoT)中最为广泛应用的领域之一。通过实时监控工厂机械设备的运行状态,企业能够提前发现设备的潜在故障,从而实现预防性维护与可预测性维护。这一做法不仅能有效提升设备的总体使用效率(OEE),还能为工厂带来显著的降本增效效果。

二、数据监控的具体案例与分析

以工厂A的一个关键超大型加工中心(CNC)为例,该设备突发故障导致整个工厂停产。由于此设备为高价值且独一无二,维修团队不得不三班倒进行紧急抢修,历经48小时才勉强恢复工作,但生产精度下降,不合格产品增多。一周后,从原厂订购的关键部件到位并完成替换,生产才完全恢复。事后复盘发现,若该设备装有监控传感器,本有机会提前发现潜在故障,从而提前订购配件并合理安排维修进度,避免停工带来的巨大经济损失。

在此案例中,尽管人工智能在自动化故障诊断方面展现出巨大潜力,但在现阶段,维修工人及专家的诊断与判断仍至关重要。因此,监控数据的可视化展示变得尤为关键,它能够帮助专家快速捕捉到数据的关键信息,从而做出正确判断。

三、IoTDB在数据可视化中的应用实践

以物联网监控加工中心切削液喷射压力数据为例,展示了IoTDB的UDF Sample算法的实践应用。物联网传感器每秒采集一次切削液的压力数据,通过IoTDB的数据可视化功能,可以清晰地看到数据中存在的快速压力变化,这通常与加工中心的换刀操作相关。

当维修班组人员看到这些数据时,他们首先需要判断这些数据是否正常。一个简单的方法是将当前数据与过去的数据进行对比。通过切换数据显示周期至7天,可以清晰地看出当前数据与过去数据的差异,从而识别出异常。在本例中,通过与现场操作工的沟通,维修专家确定异常是由于切削刀断裂引起的紧急停机事件。

四、传统抽样算法与IoTDB UDF Sample算法的区别

物联网采集的数据是连续不间断的,因此在展示长时间范围的数据时,需要对数据进行抽样以降低数据量。传统抽样算法主要基于时间进行等间距或随机下采样,但这种方法在处理突变数据时容易丢失关键信息。

为了更好地应对异常值检测等故障诊断场景,IoTDB提供了基于最大三角原理的UDF Sample算法。该算法在采样过程中考虑数值部分的变化,计算每个数据点与周围相邻数据点组成的三角形面积,并保留面积最大的点。这种方法能够很好地保留快速变化数据中的关键点,从而获得良好的数据可视化效果。在图示案例中,采用该算法后,12小时中的一小段异常数据能够在7天的抽样数据中得到几乎完整的保留。

相关推荐
汤姆yu28 分钟前
基于python大数据的小说数据可视化及预测系统
大数据·python·信息可视化
立控信息LKONE1 小时前
库室采购安全设施设备——自主研发、国产化监管一体机
大数据·安全
q***9942 小时前
Redis的Spring配置
数据库·redis·spring
S***y3962 小时前
MySQL视频
数据库·mysql
z***89713 小时前
【分布式】Hadoop完全分布式的搭建(零基础)
大数据·hadoop·分布式
周杰伦fans3 小时前
[特殊字符] 代理模式超详细讲解 ——.NET
数据库·c#·代理模式
TDengine (老段)3 小时前
TDengine 转换函数 TO_JSON 用户手册
android·大数据·数据库·json·时序数据库·tdengine·涛思数据
2301_800256114 小时前
第七章 空间存储与索引 知识点梳理3(空间填充曲线)
数据库·笔记·sql·postgresql
冰封剑心4 小时前
MiniCPM-V-2_6 (4-bit 量化)使用
java·前端·数据库
纵有疾風起4 小时前
C++——多态
开发语言·c++·经验分享·面试·开源