机器学习——聚类算法

一、聚类的概念

根据样本之间的相似性,将样本划分到不同的类别中的一种无监督学习算法。

细节:根据样本之间的相似性,将样本划分到不同的类别中;不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式。计算样本和样本之间的相似性,一般使用欧式距离。

二、聚类算法分类

根据聚类颗粒度分类:细粒度和粗粒度。

根据实现方法分类:

基于划分的聚类:K-means算法->按照质心(一个簇的中心位置,通过均值计算)分类;

基于层次的聚类:DIANA(自顶向下)AGNES(自底向上);

基于密度的聚类: DBSCAN算法

......

三、Kmeans算法流程/原理

K值的含义:表示聚类个数,参数n_clusters就是指定k值的。

API:sklearn.cluster.KMeans

流程:1.事先确定常数k,即最终聚类类别数;

2.随机选择k个样本作为初始聚类中心;

3.计算每个样本到k个中心的距离,选择最近的聚类中心点作为标记类别;

4.根据每个类别中的样本点,重新计算出新的聚类中心点(平均值),如果计算得出的新中心点与原中心点一样则停止聚类,否则重新进行第三步过程,直到聚类中心不在变化或者达到最大迭代次数。

四、聚类评估方法

1.SSE"肘"方法

计算簇内误差的平方和,SSE越小,聚类效果越好

其中:K 表示聚类中心的个数、Ci 表示簇、p 表示样本、mi 表示簇的质心

每次聚类完成要计算SSE,SSE会逐渐变小,变化过程中会出现一个拐点(即下降率突然变缓)认为是最佳n_clusters值。

在决定什么时候停止训练时,肘形判据同样有效,数据通常有更多的噪音,在增加分类无法带来更多回报时,我们停止增加类别。

2.SC轮廓系数

综合考虑簇内的内聚程度与簇间的分离程度,SC越大,聚类效果越好

其中:a是样本i到同一簇内其他不相似程度的平均值(a越小越好);b是样本i到其他簇的平均不相似程度的最小值(b越大越好)

3.CH轮廓系数

综合考虑簇内的内聚程度、簇间的分离程度、质心的个数,CH越大,聚类效果越好

SSW:

Cpi 表示质心、xi 表示某个样本、SSW 值是计算每个样本点到质心的距离,并累加起来、SSW 表示表示簇内的内聚程度,越小越好、m 表示样本数量、k 表示质心个数

SSB:

Cj 表示质心,X 表示质心与质心之间的中心点,nj 表示样本的个数、SSB 表示簇与簇之间的分离度,SSB 越大越好

相关推荐
小白菜又菜3 小时前
Leetcode 3432. Count Partitions with Even Sum Difference
算法·leetcode
wuhen_n4 小时前
LeetCode -- 15. 三数之和(中等)
前端·javascript·算法·leetcode
sin_hielo4 小时前
leetcode 2483
数据结构·算法·leetcode
橙汁味的风5 小时前
1隐马尔科夫模型HMM与条件随机场CRF
人工智能·深度学习·机器学习
极客小云5 小时前
【生物医学NLP信息抽取:药物识别、基因识别与化学物质实体识别教程与应用】
python·机器学习·nlp
Xの哲學5 小时前
Linux多级时间轮:高精度定时器的艺术与科学
linux·服务器·网络·算法·边缘计算
大头流矢5 小时前
归并排序与计数排序详解
数据结构·算法·排序算法
武子康6 小时前
大数据-197 K折交叉验证实战:sklearn 看均值/方差,选更稳的 KNN 超参
大数据·后端·机器学习
油泼辣子多加6 小时前
【信创】算法开发适配
人工智能·深度学习·算法·机器学习
Aaron15886 小时前
AD9084和Versal RF系列具体应用案例对比分析
嵌入式硬件·算法·fpga开发·硬件架构·硬件工程·信号处理·基带工程