强化学习入门:交叉熵方法实现CartPole智能体

前言

最近想开一个关于强化学习专栏,因为DeepSeek-R1很火,但本人对于LLM连门都没入。因此,只是记录一些类似的读书笔记,内容不深,大多数只是一些概念的东西,数学公式也不会太多,还望读者多多指教。本次阅读书籍为:马克西姆的《深度强化学习实践》。

限于篇幅原因,请读者首先看下历史文章:

马尔科夫过程

马尔科夫奖励过程

马尔科夫奖励过程二

RL框架Gym简介

Gym实现CartPole随机智能体

交叉熵方法数学推导

1、交叉熵方法流程图

如上图所示:模型输入为观察 s s s,而模型直接输出策略的概率分布 π ( a ∣ s ) \pi(a|s) π(a∣s),在得到概率分布后,然后从该分布中随机采样一个动作即可。

2、交叉熵算法

简单介绍下训练交叉熵算法的流程:如上图所示,

1、首先智能体在环境中生成N个片段;

2、设置一个奖励边界:比如总奖励的70%;

3、根据奖励边界过滤掉不满足的片段;

4、用剩下的精英片段来训练模型。

这里可以拿监督学习训练做下类比:上述4步完成后相当于1个epoch,而每个精英片段相当于iteration。然后不断增加epoch来更新模型。

3、CartPole实践

python 复制代码
#!/usr/bin/env python3
import numpy as np
import gymnasium as gym
from dataclasses import dataclass
import typing as tt
from torch.utils.tensorboard.writer import SummaryWriter

import torch
import torch.nn as nn
import torch.optim as optim


HIDDEN_SIZE = 128
BATCH_SIZE = 16
PERCENTILE = 70

# -----------定义一个网络 --------------- # 
class Net(nn.Module):
    def __init__(self, obs_size: int, hidden_size: int, n_actions: int):
        super(Net, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(obs_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, n_actions)
        )

    def forward(self, x: torch.Tensor):
        return self.net(x)


@dataclass
class EpisodeStep:
    observation: np.ndarray
    action: int

@dataclass
class Episode:
    reward: float
    steps: tt.List[EpisodeStep]

# 组合batch操作
def iterate_batches(env: gym.Env, net: Net, batch_size: int) -> tt.Generator[tt.List[Episode], None, None]:
    batch = []
    episode_reward = 0.0
    episode_steps = []
    obs, _ = env.reset()
    sm = nn.Softmax(dim=1)
    while True:
        obs_v = torch.tensor(obs, dtype=torch.float32)
        act_probs_v = sm(net(obs_v.unsqueeze(0)))
        act_probs = act_probs_v.data.numpy()[0]
        action = np.random.choice(len(act_probs), p=act_probs)
        next_obs, reward, is_done, is_trunc, _ = env.step(action)
        episode_reward += float(reward)
        step = EpisodeStep(observation=obs, action=action)
        episode_steps.append(step)
        if is_done or is_trunc:
            e = Episode(reward=episode_reward, steps=episode_steps)
            batch.append(e)
            episode_reward = 0.0
            episode_steps = []
            next_obs, _ = env.reset()
            # ------------------------------------------- # 迭代器
            if len(batch) == batch_size:
                yield batch
                batch = []
        obs = next_obs

# 核心:给定一个奖励边界和batch,用来筛选出"精英"片段 # 
def filter_batch(batch: tt.List[Episode], percentile: float) -> \
        tt.Tuple[torch.FloatTensor, torch.LongTensor, float, float]:
    rewards = list(map(lambda s: s.reward, batch))
    reward_bound = float(np.percentile(rewards, percentile))
    reward_mean = float(np.mean(rewards))

    train_obs: tt.List[np.ndarray] = []
    train_act: tt.List[int] = []
    for episode in batch:
        if episode.reward < reward_bound:
            continue
        train_obs.extend(map(lambda step: step.observation, episode.steps))
        train_act.extend(map(lambda step: step.action, episode.steps))

    train_obs_v = torch.FloatTensor(np.vstack(train_obs))
    train_act_v = torch.LongTensor(train_act)
    return train_obs_v, train_act_v, reward_bound, reward_mean


if __name__ == "__main__":
    env = gym.make("CartPole-v1")
    assert env.observation_space.shape is not None
    obs_size = env.observation_space.shape[0]
    assert isinstance(env.action_space, gym.spaces.Discrete)
    n_actions = int(env.action_space.n)

    net = Net(obs_size, HIDDEN_SIZE, n_actions)
    print(net)
    objective = nn.CrossEntropyLoss()
    optimizer = optim.Adam(params=net.parameters(), lr=0.01)
    writer = SummaryWriter(comment="-cartpole")

    for iter_no, batch in enumerate(iterate_batches(env, net, BATCH_SIZE)):
        obs_v, acts_v, reward_b, reward_m = filter_batch(batch, PERCENTILE)
        optimizer.zero_grad()
        action_scores_v = net(obs_v)
        loss_v = objective(action_scores_v, acts_v)
        loss_v.backward()
        optimizer.step()
        print("%d: loss=%.3f, reward_mean=%.1f, rw_bound=%.1f" % (
            iter_no, loss_v.item(), reward_m, reward_b))
        writer.add_scalar("loss", loss_v.item(), iter_no)
        writer.add_scalar("reward_bound", reward_b, iter_no)
        writer.add_scalar("reward_mean", reward_m, iter_no)
        if reward_m > 475:
            print("Solved!")
            break
    writer.close()

如上图所示:当奖励超过475时候,就得到了一个玩平衡木不错的智能体了。

总结

在本文中,我们简单介绍了交叉熵方法具体的训练流程,以及如何用交叉熵算法来实现CartPole智能体。下篇介绍Bellman方程,敬请期待。

相关推荐
编码小哥4 小时前
OpenCV Haar级联分类器:人脸检测入门
人工智能·计算机视觉·目标跟踪
程序员:钧念4 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路4 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
Chef_Chen5 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗5 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
KG_LLM图谱增强大模型5 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
JicasdC123asd6 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白6 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
哥布林学者7 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(二)词嵌入模型原理
深度学习·ai
小程故事多_807 小时前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc