强化学习入门:交叉熵方法实现CartPole智能体

前言

最近想开一个关于强化学习专栏,因为DeepSeek-R1很火,但本人对于LLM连门都没入。因此,只是记录一些类似的读书笔记,内容不深,大多数只是一些概念的东西,数学公式也不会太多,还望读者多多指教。本次阅读书籍为:马克西姆的《深度强化学习实践》。

限于篇幅原因,请读者首先看下历史文章:

马尔科夫过程

马尔科夫奖励过程

马尔科夫奖励过程二

RL框架Gym简介

Gym实现CartPole随机智能体

交叉熵方法数学推导

1、交叉熵方法流程图

如上图所示:模型输入为观察 s s s,而模型直接输出策略的概率分布 π ( a ∣ s ) \pi(a|s) π(a∣s),在得到概率分布后,然后从该分布中随机采样一个动作即可。

2、交叉熵算法

简单介绍下训练交叉熵算法的流程:如上图所示,

1、首先智能体在环境中生成N个片段;

2、设置一个奖励边界:比如总奖励的70%;

3、根据奖励边界过滤掉不满足的片段;

4、用剩下的精英片段来训练模型。

这里可以拿监督学习训练做下类比:上述4步完成后相当于1个epoch,而每个精英片段相当于iteration。然后不断增加epoch来更新模型。

3、CartPole实践

python 复制代码
#!/usr/bin/env python3
import numpy as np
import gymnasium as gym
from dataclasses import dataclass
import typing as tt
from torch.utils.tensorboard.writer import SummaryWriter

import torch
import torch.nn as nn
import torch.optim as optim


HIDDEN_SIZE = 128
BATCH_SIZE = 16
PERCENTILE = 70

# -----------定义一个网络 --------------- # 
class Net(nn.Module):
    def __init__(self, obs_size: int, hidden_size: int, n_actions: int):
        super(Net, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(obs_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, n_actions)
        )

    def forward(self, x: torch.Tensor):
        return self.net(x)


@dataclass
class EpisodeStep:
    observation: np.ndarray
    action: int

@dataclass
class Episode:
    reward: float
    steps: tt.List[EpisodeStep]

# 组合batch操作
def iterate_batches(env: gym.Env, net: Net, batch_size: int) -> tt.Generator[tt.List[Episode], None, None]:
    batch = []
    episode_reward = 0.0
    episode_steps = []
    obs, _ = env.reset()
    sm = nn.Softmax(dim=1)
    while True:
        obs_v = torch.tensor(obs, dtype=torch.float32)
        act_probs_v = sm(net(obs_v.unsqueeze(0)))
        act_probs = act_probs_v.data.numpy()[0]
        action = np.random.choice(len(act_probs), p=act_probs)
        next_obs, reward, is_done, is_trunc, _ = env.step(action)
        episode_reward += float(reward)
        step = EpisodeStep(observation=obs, action=action)
        episode_steps.append(step)
        if is_done or is_trunc:
            e = Episode(reward=episode_reward, steps=episode_steps)
            batch.append(e)
            episode_reward = 0.0
            episode_steps = []
            next_obs, _ = env.reset()
            # ------------------------------------------- # 迭代器
            if len(batch) == batch_size:
                yield batch
                batch = []
        obs = next_obs

# 核心:给定一个奖励边界和batch,用来筛选出"精英"片段 # 
def filter_batch(batch: tt.List[Episode], percentile: float) -> \
        tt.Tuple[torch.FloatTensor, torch.LongTensor, float, float]:
    rewards = list(map(lambda s: s.reward, batch))
    reward_bound = float(np.percentile(rewards, percentile))
    reward_mean = float(np.mean(rewards))

    train_obs: tt.List[np.ndarray] = []
    train_act: tt.List[int] = []
    for episode in batch:
        if episode.reward < reward_bound:
            continue
        train_obs.extend(map(lambda step: step.observation, episode.steps))
        train_act.extend(map(lambda step: step.action, episode.steps))

    train_obs_v = torch.FloatTensor(np.vstack(train_obs))
    train_act_v = torch.LongTensor(train_act)
    return train_obs_v, train_act_v, reward_bound, reward_mean


if __name__ == "__main__":
    env = gym.make("CartPole-v1")
    assert env.observation_space.shape is not None
    obs_size = env.observation_space.shape[0]
    assert isinstance(env.action_space, gym.spaces.Discrete)
    n_actions = int(env.action_space.n)

    net = Net(obs_size, HIDDEN_SIZE, n_actions)
    print(net)
    objective = nn.CrossEntropyLoss()
    optimizer = optim.Adam(params=net.parameters(), lr=0.01)
    writer = SummaryWriter(comment="-cartpole")

    for iter_no, batch in enumerate(iterate_batches(env, net, BATCH_SIZE)):
        obs_v, acts_v, reward_b, reward_m = filter_batch(batch, PERCENTILE)
        optimizer.zero_grad()
        action_scores_v = net(obs_v)
        loss_v = objective(action_scores_v, acts_v)
        loss_v.backward()
        optimizer.step()
        print("%d: loss=%.3f, reward_mean=%.1f, rw_bound=%.1f" % (
            iter_no, loss_v.item(), reward_m, reward_b))
        writer.add_scalar("loss", loss_v.item(), iter_no)
        writer.add_scalar("reward_bound", reward_b, iter_no)
        writer.add_scalar("reward_mean", reward_m, iter_no)
        if reward_m > 475:
            print("Solved!")
            break
    writer.close()

如上图所示:当奖励超过475时候,就得到了一个玩平衡木不错的智能体了。

总结

在本文中,我们简单介绍了交叉熵方法具体的训练流程,以及如何用交叉熵算法来实现CartPole智能体。下篇介绍Bellman方程,敬请期待。

相关推荐
GoGeekBaird25 分钟前
GoHumanLoopHub开源上线,开启Agent人际协作新方式
人工智能·后端·github
Jinkxs34 分钟前
测试工程师的AI转型指南:从工具使用到测试策略重构
人工智能·重构
别惹CC1 小时前
Spring AI 进阶之路01:三步将 AI 整合进 Spring Boot
人工智能·spring boot·spring
stbomei3 小时前
当 AI 开始 “理解” 情感:情感计算技术正在改写人机交互规则
人工智能·人机交互
Moshow郑锴8 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20258 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR9 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散139 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.82410 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_2869451910 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt