强化学习入门:交叉熵方法实现CartPole智能体

前言

最近想开一个关于强化学习专栏,因为DeepSeek-R1很火,但本人对于LLM连门都没入。因此,只是记录一些类似的读书笔记,内容不深,大多数只是一些概念的东西,数学公式也不会太多,还望读者多多指教。本次阅读书籍为:马克西姆的《深度强化学习实践》。

限于篇幅原因,请读者首先看下历史文章:

马尔科夫过程

马尔科夫奖励过程

马尔科夫奖励过程二

RL框架Gym简介

Gym实现CartPole随机智能体

交叉熵方法数学推导

1、交叉熵方法流程图

如上图所示:模型输入为观察 s s s,而模型直接输出策略的概率分布 π ( a ∣ s ) \pi(a|s) π(a∣s),在得到概率分布后,然后从该分布中随机采样一个动作即可。

2、交叉熵算法

简单介绍下训练交叉熵算法的流程:如上图所示,

1、首先智能体在环境中生成N个片段;

2、设置一个奖励边界:比如总奖励的70%;

3、根据奖励边界过滤掉不满足的片段;

4、用剩下的精英片段来训练模型。

这里可以拿监督学习训练做下类比:上述4步完成后相当于1个epoch,而每个精英片段相当于iteration。然后不断增加epoch来更新模型。

3、CartPole实践

python 复制代码
#!/usr/bin/env python3
import numpy as np
import gymnasium as gym
from dataclasses import dataclass
import typing as tt
from torch.utils.tensorboard.writer import SummaryWriter

import torch
import torch.nn as nn
import torch.optim as optim


HIDDEN_SIZE = 128
BATCH_SIZE = 16
PERCENTILE = 70

# -----------定义一个网络 --------------- # 
class Net(nn.Module):
    def __init__(self, obs_size: int, hidden_size: int, n_actions: int):
        super(Net, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(obs_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, n_actions)
        )

    def forward(self, x: torch.Tensor):
        return self.net(x)


@dataclass
class EpisodeStep:
    observation: np.ndarray
    action: int

@dataclass
class Episode:
    reward: float
    steps: tt.List[EpisodeStep]

# 组合batch操作
def iterate_batches(env: gym.Env, net: Net, batch_size: int) -> tt.Generator[tt.List[Episode], None, None]:
    batch = []
    episode_reward = 0.0
    episode_steps = []
    obs, _ = env.reset()
    sm = nn.Softmax(dim=1)
    while True:
        obs_v = torch.tensor(obs, dtype=torch.float32)
        act_probs_v = sm(net(obs_v.unsqueeze(0)))
        act_probs = act_probs_v.data.numpy()[0]
        action = np.random.choice(len(act_probs), p=act_probs)
        next_obs, reward, is_done, is_trunc, _ = env.step(action)
        episode_reward += float(reward)
        step = EpisodeStep(observation=obs, action=action)
        episode_steps.append(step)
        if is_done or is_trunc:
            e = Episode(reward=episode_reward, steps=episode_steps)
            batch.append(e)
            episode_reward = 0.0
            episode_steps = []
            next_obs, _ = env.reset()
            # ------------------------------------------- # 迭代器
            if len(batch) == batch_size:
                yield batch
                batch = []
        obs = next_obs

# 核心:给定一个奖励边界和batch,用来筛选出"精英"片段 # 
def filter_batch(batch: tt.List[Episode], percentile: float) -> \
        tt.Tuple[torch.FloatTensor, torch.LongTensor, float, float]:
    rewards = list(map(lambda s: s.reward, batch))
    reward_bound = float(np.percentile(rewards, percentile))
    reward_mean = float(np.mean(rewards))

    train_obs: tt.List[np.ndarray] = []
    train_act: tt.List[int] = []
    for episode in batch:
        if episode.reward < reward_bound:
            continue
        train_obs.extend(map(lambda step: step.observation, episode.steps))
        train_act.extend(map(lambda step: step.action, episode.steps))

    train_obs_v = torch.FloatTensor(np.vstack(train_obs))
    train_act_v = torch.LongTensor(train_act)
    return train_obs_v, train_act_v, reward_bound, reward_mean


if __name__ == "__main__":
    env = gym.make("CartPole-v1")
    assert env.observation_space.shape is not None
    obs_size = env.observation_space.shape[0]
    assert isinstance(env.action_space, gym.spaces.Discrete)
    n_actions = int(env.action_space.n)

    net = Net(obs_size, HIDDEN_SIZE, n_actions)
    print(net)
    objective = nn.CrossEntropyLoss()
    optimizer = optim.Adam(params=net.parameters(), lr=0.01)
    writer = SummaryWriter(comment="-cartpole")

    for iter_no, batch in enumerate(iterate_batches(env, net, BATCH_SIZE)):
        obs_v, acts_v, reward_b, reward_m = filter_batch(batch, PERCENTILE)
        optimizer.zero_grad()
        action_scores_v = net(obs_v)
        loss_v = objective(action_scores_v, acts_v)
        loss_v.backward()
        optimizer.step()
        print("%d: loss=%.3f, reward_mean=%.1f, rw_bound=%.1f" % (
            iter_no, loss_v.item(), reward_m, reward_b))
        writer.add_scalar("loss", loss_v.item(), iter_no)
        writer.add_scalar("reward_bound", reward_b, iter_no)
        writer.add_scalar("reward_mean", reward_m, iter_no)
        if reward_m > 475:
            print("Solved!")
            break
    writer.close()

如上图所示:当奖励超过475时候,就得到了一个玩平衡木不错的智能体了。

总结

在本文中,我们简单介绍了交叉熵方法具体的训练流程,以及如何用交叉熵算法来实现CartPole智能体。下篇介绍Bellman方程,敬请期待。

相关推荐
数据科学作家2 小时前
学数据分析必囤!数据分析必看!清华社9本书覆盖Stata/SPSS/Python全阶段学习路径
人工智能·python·机器学习·数据分析·统计·stata·spss
CV缝合救星3 小时前
【Arxiv 2025 预发行论文】重磅突破!STAR-DSSA 模块横空出世:显著性+拓扑双重加持,小目标、大场景统统拿下!
人工智能·深度学习·计算机视觉·目标跟踪·即插即用模块
java1234_小锋4 小时前
Scikit-learn Python机器学习 - 特征预处理 - 标准化 (Standardization):StandardScaler
python·机器学习·scikit-learn
TDengine (老段)5 小时前
从 ETL 到 Agentic AI:工业数据管理变革与 TDengine IDMP 的治理之道
数据库·数据仓库·人工智能·物联网·时序数据库·etl·tdengine
蓝桉8026 小时前
如何进行神经网络的模型训练(视频代码中的知识点记录)
人工智能·深度学习·神经网络
星期天要睡觉6 小时前
深度学习——数据增强(Data Augmentation)
人工智能·深度学习
笑脸惹桃花7 小时前
50系显卡训练深度学习YOLO等算法报错的解决方法
深度学习·算法·yolo·torch·cuda
南山二毛8 小时前
机器人控制器开发(导航算法——导航栈关联坐标系)
人工智能·架构·机器人
大数据张老师8 小时前
【案例】AI语音识别系统的标注分区策略
人工智能·系统架构·语音识别·架构设计·后端架构
xz2024102****8 小时前
吴恩达机器学习合集
人工智能·机器学习