CNN卷积神经网络实战(1)

CNN卷积神经网络的由来:

CNN卷积神经网络是基于MLP模型上解决图片像素很大的时候,训练参数很多时,如何减少训练参数的数量的问题上衍生的。对于上述问题的解决办法是提取出图像中的关键信息(或关键轮廓),提取后再建立MLP模型进行训练。

图像卷积运算

图像卷积运算:

对图像矩阵与滤波器矩阵进行对应相乘然后再求和的运算,转化得到新的矩阵。

作用:可以快速定位图像中某些边缘特征

例如:图像矩阵A,滤波器矩阵F,A和F进行卷积后得到A*F

卷积神经网络的核心---寻找合适的轮廓过滤器

计算机根据样本图片,自动寻找合适的轮廓过滤器,对新的图片进行轮廓匹配

在有些情况,一个过滤器是不够的,需要寻找很多过滤器。比如彩色图像

RGB图像的卷积:对R/G/B 3个通道分别求卷积再相加。

卷积的目的是提取图像特征和轮廓

卷积后得到的训练数据参数,如何对训练数据参数进行进一步的减少,这里需要引入池化。

池化

池化的概念:按照一个固定规则对图像矩阵进行处理,其目的是为了将其转化成更低维度的矩阵。分为2种池化类型,最大法池化(Max-pooling)和平均值池化

池化的前提条件是保留核心信息的前提条件下,对训练参数进行降维。

卷积神经网络的概念

将卷积,池化,mlp先后连接在一起,组成卷积神经网络。

在卷积神经网络中还有一个激活函数,比如Relu函数:f(x) = max(x,0)

其作用是使部分神经元为0,防止过拟合,还有一种作用是有助于模型求解。

卷积神经网络的特征

  1. 参数共享:同一个过滤特征器可以适用于整张图片。
  2. 稀疏连接:生成的特征图片每个节点只与原图片中特定节点连接。

卷积神经网络实战

训练数据图片的预处理

复制代码
from keras.src.legacy.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory('/Users/zc/PyCharmMiscProject/dataset/',target_size=(500,500),batch_size=32,class_mode='binary')
print(training_set.class_indices)

卷积神经网络模型的建立

复制代码
from keras.models import Sequential
from keras.layers import Conv2D,MaxPool2D,Flatten,Dense
model = Sequential()
#增加卷积层
model.add(Conv2D(32,(3,3),input_shape=(500,500,3),activation='relu'))
#增加池化层
model.add(MaxPool2D(pool_size=(2,2)))
#增加卷积层
model.add(Conv2D(32,(3,3),activation='relu'))
#增加池化层
model.add(MaxPool2D(pool_size=(2,2)))
#增加Flatten
model.add(Flatten())
#增加FC layer
model.add(Dense(units=128,activation='relu'))
model.add(Dense(units=1,activation='sigmoid'))
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
model.summary()

模型训练和模型评估

model.fit(training_set,epochs=8)
train_accuracy = model.evaluate(training_set)
print("train accuracy:",train_accuracy)

网上下载图片进行猫狗预测

pic_dog = '/Users/zc/PyCharmMiscProject/4.jpg'
pic_dog = load_img(pic_dog,target_size=(500,500))
pic_dog = img_to_array(pic_dog)
# print(pic_dog)
pic_dog = pic_dog/255
print(pic_dog)

pic_dog.reshape(1,500,500,3)
print(type(pic_dog))
print(pic_dog)
result1 = model.predict(pic_dog)
print(result1)

从网上下载图片进行预测,预测结果为none,没有到达实战的效果,现在暂时没有定位出具体哪里出现了问题,后续再定位。网上各位好友有思路请告诉我,非常感激。

相关推荐
工藤学编程1 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅2 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技4 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102166 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)6 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了6 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好6 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能7 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案7 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记