【论文笔记】【强化微调】T-GRPO:对视频数据进行强化微调

tulerfeng/Video-R1: Video-R1: Reinforcing Video Reasoning in MLLMs [🔥the first paper to explore R1 for video]

1. 引述

在强化微调中,像 GRPO、DAPO 这样的方法都是对文本或者图片进行微调思考,所以这类微调方法不对时序信息做处理,因此无法很好的迁移到视频的强化微调中。

虽说目前有不少视频理解的工作,但是都没有加上强化微调的方法。也就是说,针对视频数据的强化微调很稀缺。

于是几个大学(港大+清华+中科大)联合搞了一个 Video-R1,提出 T-GRPO,实现对视频进行思考。

2. T-GRPO

T-GRPO 的核心思路如上图。

相比 GRPO,T-GRPO 的创新在于使大模型微调的时候,能关注时序信息。做法就是将视频数据复制一份,并将这一份的视频帧打乱,打乱视频帧的视频就没有时序信息了。

于是,设置奖励,使得模型在分析视频内容时,要求对有时序信息的视频帧分析正确,对乱序的视频帧分析错误。写成公式如下:(这里的 设置为 0.3)

于是乎,T-GRPO 的核心奖励如下:

其中, 代表问题是否回答正确。这个公式的意思就是说,如果有时序信息的视频帧的分析效果比乱序的更好,那么奖励就是

除此之外,还对模型输出长度通过奖励做了限制。如果输出长度少,还有额外奖励:

最小长度 被设置为 320,最大长度 被设置为 512

相关推荐
菜鸟‍12 小时前
【论文笔记】2025年图像处理顶会论文
论文阅读
张较瘦_14 小时前
[论文阅读] AI+软件工程 | 开发者 AI 需求新指南:任务感知视角下的负责任 AI 实证研究
论文阅读·人工智能·软件工程
红苕稀饭66616 小时前
M-LLM Based Video Frame Selection for Efficient Video Understanding论文阅读
论文阅读
森诺Alyson2 天前
前沿技术借鉴研讨-2025.9.23 (数据不平衡)
论文阅读·人工智能·经验分享·深度学习·论文笔记
Chandler_Song2 天前
【读书笔记】《苏东坡》
论文阅读
Prettybritany3 天前
文本引导的图像融合方法
论文阅读·图像处理·人工智能·深度学习·计算机视觉
张较瘦_3 天前
[论文阅读] AI+软件工程 | AI供应链信任革命:TAIBOM如何破解AI系统“可信难题“
论文阅读·人工智能·软件工程
红苕稀饭6663 天前
Logit论文阅读
论文阅读
网安INF3 天前
【论文阅读】-《Sparse and Imperceivable Adversarial Attacks》
论文阅读·人工智能·计算机视觉·网络安全·对抗攻击
PETERMAOSX3 天前
SkyVLN: 城市环境中无人机的视觉语言导航和 NMPC 控制;香港科技大学
论文阅读