【论文笔记】【强化微调】T-GRPO:对视频数据进行强化微调

tulerfeng/Video-R1: Video-R1: Reinforcing Video Reasoning in MLLMs [🔥the first paper to explore R1 for video]

1. 引述

在强化微调中,像 GRPO、DAPO 这样的方法都是对文本或者图片进行微调思考,所以这类微调方法不对时序信息做处理,因此无法很好的迁移到视频的强化微调中。

虽说目前有不少视频理解的工作,但是都没有加上强化微调的方法。也就是说,针对视频数据的强化微调很稀缺。

于是几个大学(港大+清华+中科大)联合搞了一个 Video-R1,提出 T-GRPO,实现对视频进行思考。

2. T-GRPO

T-GRPO 的核心思路如上图。

相比 GRPO,T-GRPO 的创新在于使大模型微调的时候,能关注时序信息。做法就是将视频数据复制一份,并将这一份的视频帧打乱,打乱视频帧的视频就没有时序信息了。

于是,设置奖励,使得模型在分析视频内容时,要求对有时序信息的视频帧分析正确,对乱序的视频帧分析错误。写成公式如下:(这里的 设置为 0.3)

于是乎,T-GRPO 的核心奖励如下:

其中, 代表问题是否回答正确。这个公式的意思就是说,如果有时序信息的视频帧的分析效果比乱序的更好,那么奖励就是

除此之外,还对模型输出长度通过奖励做了限制。如果输出长度少,还有额外奖励:

最小长度 被设置为 320,最大长度 被设置为 512

相关推荐
有Li9 小时前
医用图像配准中从基于模型到学习正则化的综合综述|文献速递-文献分享
论文阅读·深度学习·文献
0x21111 小时前
[论文阅读]TracLLM: A Generic Framework for Attributing Long Context LLMs
论文阅读
聊询QQ:2769988512 小时前
基于Matlab的模糊自适应PID控制器探索
论文阅读
一碗白开水一13 小时前
【论文阅读】Denoising Diffusion Probabilistic Models (DDPM)详细解析及公式推导
论文阅读·人工智能·深度学习·算法·机器学习
橘子是码猴子15 小时前
TDT Loss Takes It All论文阅读
论文阅读
墨绿色的摆渡人1 天前
论文笔记(一百零八)Simulation-based pipeline tailors training data for dexterous robots
论文阅读
森诺Alyson1 天前
前沿技术借鉴研讨-2025.12.9(胎儿面部异常检测/超声标准平面检测/宫内生长受限)
论文阅读·人工智能·经验分享·深度学习·论文笔记
wzx_Eleven2 天前
【论文阅读】多密钥低通信轮次的联邦学习安全聚合
论文阅读·深度学习·神经网络·安全·同态加密
做cv的小昊2 天前
VLM相关论文阅读:【LoRA】Low-rank Adaptation of Large Language Models
论文阅读·人工智能·深度学习·计算机视觉·语言模型·自然语言处理·transformer
magic_ll2 天前
【论文阅读】【yolo系列】YOLOv10: Real-Time End-to-End Object Detection
论文阅读·yolo·目标检测