DeepSeek + AnythingLLM 搭建你的私人知识库

一、AnythingLLM 是什么?

官网:https://anythingllm.com/

AnythingLLM 是一款基于大语言模型(LLM)的企业级应用框架或工具,旨在帮助企业或开发者快速构建、部署和管理定制化的 AI 对话系统或知识助手。它的核心特点是高度灵活,支持多种大语言模型(如 OpenAI GPT、Anthropic Claude、开源 Llama 等),并允许用户私有化部署,确保数据安全。

主要功能与特点:

  1. 多模型支持

    可集成开源或商业 LLM(如 GPT-4、Claude、Llama 2 等),用户能自由切换或测试不同模型的效果。

  2. 私有化部署

    支持本地或内网部署,避免敏感数据通过第三方 API 泄露,适合企业级需求。

  3. 文档与知识库集成

    允许上传企业文档(PDF、TXT、Word 等),构建专属知识库,AI 可基于这些内容生成精准回答(类似 RAG 技术)。

  4. 可定制化

    提供用户界面(UI)和管理后台,支持自定义 AI 的行为、角色设定、权限控制等,适应不同场景(如客服、内部知识查询等)。

  5. 开源与商业版本

    部分版本可能开源(如社区版),同时提供企业级付费功能(如高级支持、更多集成选项等)。

典型应用场景:

  • 企业内部助手:解答员工关于公司政策、技术文档的问题。
  • 客户支持:集成到网站或聊天工具中,提供自动化客服。
  • 数据分析:通过自然语言查询数据库或文档库。

与其他工具的区别:

  • 相比直接使用 ChatGPT 等公有云服务,AnythingLLM 更注重数据隐私和定制化。
  • 类似的开源项目还有 PrivateGPT、LangChain 等,但 AnythingLLM 通常强调更友好的用户界面和端到端解决方案。

二、安装

  1. 这里选择安装在Linux服务器,使用浏览器进行访问,方便扩展使用场景。
    docker-compose.yml
shell 复制代码
version: '3.8'

services:
  anythingllm:
    image: mintplexlabs/anythingllm:latest
    container_name: anythingllm
    restart: always
    ports:
      - "3000:3000"
    volumes:
      - ./storage:/app/server/storage:rw
      - ./uploads:/app/server/uploads:rw
    environment:
      - SERVER_PORT=3000
      - STORAGE_DIR=/app/server/storage
      - UPLOAD_DIR=/app/server/uploads
      - JWT_SECRET=your_secure_secret_here
      - ALLOW_SIGNUP=false
  1. 还可以安装 win 的桌面版本。

启动

shell 复制代码
首次启动:
cd anything_llm

mkdir storage uploads
chmod -R 777 storage uploads

docker-compose up -d

打开页面

配置AI接口

这里选择的是 DeepSeek

用户配置

这里选团队,后续可以多人协作。


创建工作区



上传文档

这里模拟上传5份简历,方便后续对简历进行筛选。

上传成功

提问:帮我筛选一下简历,我需要2名开发人员。

可以看到 给出的答案以及引用的文档

使用AnythingLLM 结合 DeepSeek 我们可以轻松的对已有的知识以及素材进行管理,把文件夹里的文档高效的转化成生产力。

结语

效率革命,从今天开始!用 DeepSeek + AnythingLLM 搭建的本地AI知识库,不仅是工具,更是你对抗信息混乱的"终极武器"。

相关推荐
eve杭3 小时前
解锁数据主权与极致性能:AI本地部署的全面指南
大数据·人工智能·5g·ai
山顶夕景6 小时前
【LLM-RL】GSPO算法Group Sequence Policy Optimization
llm·强化学习·rlhf·gspo
余衫马8 小时前
llama.cpp:本地大模型推理的高性能 C++ 框架
c++·人工智能·llm·llama·大模型部署
yaocheng的ai分身10 小时前
A16Z 大佬 Alex Rampell《Software Is Eating Labor》演讲
llm
utmhikari10 小时前
【测试人生】LLM赋能游戏自动化测试的一些想法
自动化测试·游戏·ai·大模型·llm·游戏测试
智泊AI11 小时前
突然发现:大模型RAG优化思路真的好清晰!
llm
Learn Beyond Limits14 小时前
Using per-item Features|使用每项特征
人工智能·python·神经网络·算法·机器学习·ai·吴恩达
nju_spy14 小时前
大模型面经(一) Prompt + RAG + 微调
人工智能·面试·lora·大模型·rag·提示词工程·peft微调
玩转AGI15 小时前
【必收藏】12-Factor Agents:让大模型Agent从能跑起来到能用起来的企业级设计指南
人工智能·程序员·llm
广都--编程每日问16 小时前
deepseek 的对话json导出成word和pdf
pdf·json·word·deepseek·exprot