python
复制代码
import torch
from torch.utils.data import Dataset,DataLoader,random_split
from torchvision import transforms
import pandas as pd
from PIL import Image
import torch.nn as nn
import torchvision.models as models
from tqdm import tqdm
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
##########################################################################################################
#首先处理数据集--训练集与外部测试集
class LeavesDataset(Dataset):
def __init__(self,csv_path,transform=None):
self.data=pd.read_csv(csv_path)
self.transform=transform
self.label_to_idx=self.encode_labels(self.data['label'])
def encode_labels(self,labels):
unique_labels=sorted(set(labels))
label_to_idx={label:idx for idx,label in enumerate(unique_labels)}
return label_to_idx
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
image_path=self.data.iloc[idx,0]
label_text=self.data.iloc[idx,1]
label=self.label_to_idx[label_text]
image=Image.open(image_path).convert('RGB')
if self.transform:
image=self.transform(image)
return image,label
#这是测试集的处理方法,测试集没有label
class TestDataset(Dataset):
def __init__(self,csv_path,transform=None):
self.data=pd.read_csv(csv_path)
self.transform=transform
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
image_path=self.data.iloc[idx,0]
image=Image.open(image_path).convert('RGB')
if self.transform:
image=self.transform(image)
return image,image_path
##########################################################################################################
#训练过程--绘图与训练
def plot_metrics(train_loss_list, train_acc_list, test_acc_list, title='Training Curve'):
epochs = range(1, len(train_loss_list) + 1)
plt.figure(figsize=(4, 3))
plt.plot(epochs, train_loss_list, label='Train Loss')
plt.plot(epochs, train_acc_list, label='Train Acc',linestyle='--')
plt.plot(epochs, test_acc_list, label='Test Acc', linestyle='--')
plt.xlabel('Epoch')
plt.ylabel('Value')
plt.title(title)
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
def train_model(model,train_data,test_data,num_epochs,device):
train_loss_list = []
train_acc_list = []
test_acc_list = []
for epoch in range(num_epochs):
total_loss=0
total_acc_sample=0
total_samples=0
loop1=tqdm(train_data,desc=f"EPOCHS[{epoch+1}/{num_epochs}]",colour='#FF5555')
for X,y in loop1:
#X=X.reshape(X.shape[0],-1)
#print(X.shape)
X=X.to(device)
y=y.to(device)
y_hat=model(X)
loss=CEloss(y_hat,y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
#loss累加
total_loss+=loss.item()*X.shape[0]
y_pred=y_hat.argmax(dim=1).detach().cpu().numpy()
y_true=y.detach().cpu().numpy()
total_acc_sample+=accuracy_score(y_pred,y_true)*X.shape[0]#保存样本数
total_samples+=X.shape[0]
test_acc_samples=0
test_samples=0
loop2=tqdm(test_data,desc=f"EPOCHS[{epoch+1}/{num_epochs}]",colour='#FF5555')
for X,y in loop2:
X=X.to(device)
y=y.to(device)
#X=X.reshape(X.shape[0],-1)
y_hat=model(X)
y_pred=y_hat.argmax(dim=1).detach().cpu().numpy()
y_true=y.detach().cpu().numpy()
test_acc_samples+=accuracy_score(y_pred,y_true)*X.shape[0]#保存样本数
test_samples+=X.shape[0]
avg_train_loss=total_loss/total_samples
avg_train_acc=total_acc_sample/total_samples
avg_test_acc=test_acc_samples/test_samples
train_loss_list.append(avg_train_loss)
train_acc_list.append(avg_train_acc)
test_acc_list.append(avg_test_acc)
print(f"Epoch {epoch+1}: Loss: {avg_train_loss:.4f},Trian Accuracy: {avg_train_acc:.4f},test Accuracy: {avg_test_acc:.4f}")
plot_metrics(train_loss_list, train_acc_list, test_acc_list)
return model
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.xavier_uniform_(m.weight)
################################################################################################################
transforms=transforms.Compose([transforms.RandomHorizontalFlip(),
transforms.Resize(224),
transforms.RandomRotation(30),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),(0.229, 0.224, 0.225))])
data=LeavesDataset("train.csv",transform=transforms)
label_mapping = data.label_to_idx
train_size=int(0.8*len(data))
test_size=len(data)-train_size
train_data,test_data=random_split(data,[train_size,test_size])
print(len(train_data),len(test_data))
train_dataloader=DataLoader(train_data,batch_size=64,num_workers=8,shuffle=True)
test_dataloader=DataLoader(test_data,batch_size=64,num_workers=8,shuffle=False)
#最终还是决定拿所有的图像进行训练
train_dataloader_all=DataLoader(data,batch_size=64,num_workers=8,shuffle=True)
################################################################################################################
################################################################################################################
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
model=models.resnet50(pretrained=True)#直接调用ResNet-50进行训练
num_classes=len(data.label_to_idx)
model.fc=nn.Linear(model.fc.in_features,num_classes)
model.apply(init_weights)
model = model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, weight_decay=1e-4)
CEloss=nn.CrossEntropyLoss()
model=train_model(model,train_dataloader,test_dataloader,num_epochs=50,device=device)
################################################################################################################
#这里是测试过程
test_dataset_ext = TestDataset('test.csv', transform=transforms)
test_loader = torch.utils.data.DataLoader(test_dataset_ext, batch_size=32, shuffle=False)
all_preds = []
with torch.no_grad():
for images, img_paths in test_loader:
images = images.to(device)
outputs = model(images)
preds = outputs.argmax(dim=1).cpu().tolist()
# 将数字标签映射回类别名称
idx_to_label = {v: k for k, v in label_mapping.items()}
pred_labels = [idx_to_label[p] for p in preds]
# 保存图片路径和预测结果
for path, label in zip(img_paths, pred_labels):
all_preds.append((path, label))
#将结果保存为csv进行提交
df_result = pd.DataFrame(all_preds, columns=['image', 'label'])
df_result.to_csv('pred_submission.csv', index=False)
################################################################################################################