20.微调ResNet-18网络分类热狗数据集(失败版本)

python 复制代码
import os
import torch
import torchvision
from torch import nn
import torchvision.models as models
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from tqdm import tqdm
from sklearn.metrics import accuracy_score
##########################################################################################################################
def plot_metrics(train_loss_list, train_acc_list, test_acc_list, title='Training Curve'):
    epochs = range(1, len(train_loss_list) + 1)
    plt.figure(figsize=(4, 3))
    plt.plot(epochs, train_loss_list, label='Train Loss')
    plt.plot(epochs, train_acc_list, label='Train Acc',linestyle='--')
    plt.plot(epochs, test_acc_list, label='Test Acc', linestyle='--')
    plt.xlabel('Epoch')
    plt.ylabel('Value')
    plt.title(title)
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()
def train_model(model,train_data,test_data,num_epochs):
    train_loss_list = []
    train_acc_list = []
    test_acc_list = []
    for epoch in range(num_epochs):
        total_loss=0
        total_acc_sample=0
        total_samples=0
        loop1=tqdm(train_data,desc=f"EPOCHS[{epoch+1}/{num_epochs}]")
        for X,y in loop1:
            #X=X.reshape(X.shape[0],-1)
            #print(X.shape)
            X=X.to(device)
            y=y.to(device)
            y_hat=model(X)
            loss=CEloss(y_hat,y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            #loss累加
            total_loss+=loss.item()*X.shape[0]
            y_pred=y_hat.argmax(dim=1).detach().cpu().numpy()
            y_true=y.detach().cpu().numpy()
            total_acc_sample+=accuracy_score(y_pred,y_true)*X.shape[0]#保存样本数
            total_samples+=X.shape[0]
        test_acc_samples=0
        test_samples=0
        loop2=tqdm(test_data,desc=f"EPOCHS[{epoch+1}/{num_epochs}]")
        for X,y in loop2:
            X=X.to(device)
            y=y.to(device)
            #X=X.reshape(X.shape[0],-1)
            y_hat=model(X)
            y_pred=y_hat.argmax(dim=1).detach().cpu().numpy()
            y_true=y.detach().cpu().numpy()
            test_acc_samples+=accuracy_score(y_pred,y_true)*X.shape[0]#保存样本数
            test_samples+=X.shape[0]
        avg_train_loss=total_loss/total_samples
        avg_train_acc=total_acc_sample/total_samples
        avg_test_acc=test_acc_samples/test_samples
        train_loss_list.append(avg_train_loss)
        train_acc_list.append(avg_train_acc)
        test_acc_list.append(avg_test_acc)
        print(f"Epoch {epoch+1}: Loss: {avg_train_loss:.4f},Trian Accuracy: {avg_train_acc:.4f},test Accuracy: {avg_test_acc:.4f}")
    plot_metrics(train_loss_list, train_acc_list, test_acc_list)
    return model
##########################################################################################################################
data_dir=r'./hotdog_dataset/hotdog'
# 使用RGB通道的均值和标准差,以标准化每个通道
train_augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomResizedCrop(224),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

test_augs = torchvision.transforms.Compose([
    torchvision.transforms.Resize([256, 256]),
    torchvision.transforms.CenterCrop(224),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
train_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'),transform=train_augs)
test_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'test'),transform=test_augs)
train_data=DataLoader(train_imgs,batch_size=16,num_workers=4,shuffle=True)
test_data=DataLoader(test_imgs,batch_size=16,num_workers=4,shuffle=False)
##########################################################################################################################
pretrained_net = models.resnet18(pretrained=True)
#加载预训练模型并且更改最后层
finetune_net=models.resnet50(pretrained=True)
finetune_net.fc=nn.Linear(finetune_net.fc.in_features,2)
nn.init.xavier_normal(finetune_net.fc.weight)
##########################################################################################################################
#开始训练
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
finetune_net.to(device)
CEloss=nn.CrossEntropyLoss()
params_1x = [param for name, param in finetune_net.named_parameters() if name not in ["fc.weight", "fc.bias"]]
optimizer = torch.optim.SGD([
        {'params': params_1x},
        {'params': finetune_net.fc.parameters(), 'lr':0.001 * 10}
    ], lr=0.001, weight_decay=1e-4)
model=train_model(finetune_net,train_data,test_data,num_epochs=10)
相关推荐
shayudiandian1 小时前
深度学习中的激活函数全解析:该选哪一个?
人工智能·深度学习
视界先声1 小时前
如何选择合适的养老服务机器人
人工智能·物联网·机器人
RPA机器人就选八爪鱼1 小时前
RPA财务机器人:重塑财务效率,数字化转型的核心利器
大数据·数据库·人工智能·机器人·rpa
腾讯WeTest2 小时前
Al in CrashSight ——基于AI优化异常堆栈分类模型
人工智能·分类·数据挖掘
凯子坚持 c2 小时前
openGauss向量数据库技术演进与AI应用生态全景
数据库·人工智能
嵌入式-老费2 小时前
自己动手写深度学习框架(从网络训练到部署)
人工智能·深度学习
温柔哥`3 小时前
HiProbe-VAD:通过在免微调多模态大语言模型中探测隐状态实现视频异常检测
人工智能·语言模型·音视频
强化学习与机器人控制仿真3 小时前
字节最新开源模型 DA3(Depth Anything 3)使用教程(一)从任意视角恢复视觉空间
人工智能·深度学习·神经网络·opencv·算法·目标检测·计算机视觉
机器之心3 小时前
如视发布空间大模型Argus1.0,支持全景图等多元输入,行业首创!
人工智能·openai