算法竞赛备赛——【图论】求最短路径——Floyd算法

floyd算法

基于动态规划

应用:求多源最短路 时间复杂度:n^3

dijkstra:不能解决负边权

floyd:能解决负边权 不能解决负边权回路问题

求最短路径:dijkstra bfs floyd

思路

1.让任意两点之间的距离变短:引入中转点k

通过k来中转 i---->k---->j < i----->j

2.找状态:

n个点都可以做中转点的情况下,i到j之间的最短路径的长度是x

最终状态:dp[n][i][j]=x;

中间状态:dp[k][i][j]=x;经过前k个点(1~k)做中转点的情况下,i到j之间的最短路径的长度是x

初始状态:dp[0][i][j]=a[i][j];

3.找状态转移方程

经过前k个点(1~k)做中转点的情况下,i到j之间的最短路径的长度是?

中间状态:dp[k][i][j]=?

前k-1个状态已知,前k-1个点(1~k-1)做中转点的情况下,i到j之间的最短路径的长度

if(dp[k][i][j]>dp[k-1][i][k]+dp[k-1][k][j])

dp[k][i][j]=dp[k-1][i][k]+dp[k-1][k][j]

else

dp[k][i][j]=dp[k-1][i][j];

代码实现

C++ 复制代码
#include<iostream> 
using namespace std;
#define inf 0x7fffffff
int n, m;
int a[105][105];//邻接矩阵存图
int dp[105][105][105];

int main() {
	cin >> n >> m;
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			a[i][j] = inf;
			if (i == j) {
				a[i][j] = 0;
			}
		}
	}
	int x, y, w;
	for (int i = 1; i <= m; i++) {
		cin >> x >> y >> w;
		a[x][y] = w;
	}

	//初始化dp
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			dp[0][i][j] = a[i][j];
		}
	}
	for (int k = 1; k <= n; k++) {//枚举中转点
		for (int i = 1; i <= n; i++) {//枚举起点、终点
			for (int j = 1; j <= n; j++) {
				dp[k][i][j] = min(dp[k - 1][i][j], dp[k - 1][i][k] + dp[k - 1][k][j]);
			}
		}
	}
	//输出
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			cout << dp[n][i][j] << " ";
		}
	}
	return 0;
}

降维

C++ 复制代码
#include<iostream> 
using namespace std;
//降维 三维降为二维
#define inf 0x7fffffff
int n, m;
int a[105][105];//邻接矩阵存图
int dp[105][105]; 

int main() {
	cin >> n >> m;
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			a[i][j] = inf;
			if (i == j) {
				a[i][j] = 0;
			}
		}
	}
	int x, y, w;
	for (int i = 1; i <= m; i++) {
		cin >> x >> y >> w;
		a[x][y] = w;
	}

	//初始化dp
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			dp[i][j] = a[i][j];
		}
	}
	//三重循环的顺序不能变换
	for (int k = 1; k <= n; k++) {//最外层一定是 枚举中转点
		for (int i = 1; i <= n; i++) {//枚举起点、终点
			for (int j = 1; j <= n; j++) {
				dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]);
			}
		}
	}
	//输出
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			cout << dp[i][j] << " ";
		}
	}
	return 0;
}
相关推荐
默|笙20 分钟前
【c++】STL-容器 list 的实现
c++·windows·list
请站在我身后40 分钟前
无声视频自动配音效,开源模型thinksound 和mmaudio复现
人工智能·深度学习·算法·计算机视觉·aigc
屁股割了还要学1 小时前
【C语言进阶】题目练习(2)
c语言·开发语言·c++·学习·算法·青少年编程
weixin_457665391 小时前
基于可变参模板的线程池
linux·c++
Mr_Xuhhh2 小时前
Qt窗口(2)-工具栏
java·c语言·开发语言·数据库·c++·qt·算法
JQLvopkk2 小时前
C#通过HslCommunication连接西门子PLC1200,并防止数据跳动的通用方法
前端·javascript·算法
艾莉丝努力练剑2 小时前
【数据结构与算法】数据结构初阶:详解顺序表和链表(五)——双向链表
c语言·开发语言·数据结构·学习·算法
李昊哲小课2 小时前
支持向量机SVM
人工智能·算法·机器学习·支持向量机·数据挖掘·sklearn
jndingxin2 小时前
OpenCV多尺度图像增强算法函数BIMEF()
人工智能·opencv·算法
算法_小学生2 小时前
Hinge Loss(铰链损失函数)详解:SVM 中的关键损失函数
开发语言·人工智能·python·算法·机器学习·支持向量机