【LLM】OpenRouter调用Anthropic Claude上下文缓存处理

背景

在使用OpenRouter调用Anthropic Claude大模型时,部分模型支持上下文缓存功能。当缓存命中时,调用成本会显著降低。虽然像DeepSeek这类模型自带上下文缓存机制,但本文主要针对构建Agent场景下,需要多次调用Anthropic Claude时的缓存设置策略。

缓存机制的价值

根据官方定价策略:

  • 缓存设置:需要支付额外费用
  • 缓存命中:可大幅降低调用成本
  • 成本效益:在大量调用场景下,缓存命中能带来显著的成本节约

提示:可以通过OpenRouter账单中的调用历史费用来验证是否成功命中缓存。

官方缓存设置方法

根据官方文档的说明:

标准的缓存设置通过在消息中添加以下结构实现:

json 复制代码
{
  "cache_control": {
      "type": "ephemeral"
  }
}

缓存机制原理:这是一个前缀缓存机制,即设置缓存的消息之前的所有消息都会被缓存。

现有问题与限制

经过实际测试发现:

有效场景 :在roleuser的消息中设置缓存控制有效

无效场景 :在roletool的消息中设置缓存控制无效(尽管Claude官方API支持)

注意:这个问题在OpenRouter社区中已有反馈,但目前尚未得到修复。

解决方案

针对工具调用后无法在tool消息中设置缓存的问题,我们采用添加用户消息的方式来绕过限制。

原始消息结构

json 复制代码
[
  {
    "role": "system",
    "content": [ {"type": "text", "text": "..."} ]
  },
  {
    "role": "user",
    "content": [
      { "type": "text", "text": "...", "cache_control": {"type": "ephemeral"} }
    ]
  },
  {
    "role": "assistant",
    "content": [ {"type": "text", "text": "..."} ],
    "tool_calls": []
  },
  {
    "role": "tool", 
    "tool_call_id": "...", 
    "name": "...", 
    "content": "..."
  }, // 这里无法添加cache_control
  {
    "role": "assistant",
    "content": [ {"type": "text", "text": "..."} ],
    "tool_calls": []
  }
]

优化后的消息结构

json 复制代码
[
  {
    "role": "system",
    "content": [ {"type": "text", "text": "..."} ]
  },
  {
    "role": "user",
    "content": [
      { "type": "text", "text": "..."}
    ]
  },
  {
    "role": "assistant",
    "content": [ {"type": "text", "text": "..."} ],
    "tool_calls": []
  },
  {
    "role": "tool", 
    "tool_call_id": "...", 
    "name": "...", 
    "content": "..."
  },
  {
    "role": "user",
    "content": [
      { 
        "type": "text", 
        "text": "function called", 
        "cache_control": {"type": "ephemeral"} 
      }
    ]
  }, // 新增用户消息来设置缓存
  {
    "role": "assistant",
    "content": [ {"type": "text", "text": "..."} ],
    "tool_calls": []
  }
]

关键改进

  • 在工具调用后添加一个用户消息
  • 消息内容使用"function called"等简单提示,避免改变对话语义
  • 在此消息中设置缓存控制

重要注意事项

  1. 缓存设置上限 :Claude的cache_control结构设置是有数量限制的
  2. 最佳实践:只需在最后一个用户消息中设置缓存即可,前面的消息会自动被缓存
  3. 成本优化:在高频调用场景下,合理使用缓存能显著降低API调用成本

总结

通过在工具调用后添加用户消息的方式,我们成功绕过了OpenRouter在tool消息中无法设置缓存的限制。这种方法在保持对话语义完整性的同时,实现了有效的缓存管理,为Agent应用的成本控制提供了实用的解决方案。

相关推荐
晚风吹人醒.4 小时前
缓存中间件Redis安装及功能演示、企业案例
linux·数据库·redis·ubuntu·缓存·中间件
老前端的功夫6 小时前
前端浏览器缓存深度解析:从网络请求到极致性能优化
前端·javascript·网络·缓存·性能优化
编程小白_正在努力中8 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海8 小时前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
H***997610 小时前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习
FL162386312912 小时前
无人机视角航拍河道漂浮物垃圾识别分割数据集labelme格式256张1类别
深度学习
q***876013 小时前
yum安装redis
数据库·redis·缓存
青瓷程序设计14 小时前
昆虫识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
小殊小殊14 小时前
DeepSeek为什么这么慢?
人工智能·深度学习
Coding茶水间16 小时前
基于深度学习的路面坑洞检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉