模型的存储、加载和部署

定义损失函数并以此训练和评估模型
存储模型可以只存储state_dict或模型参数,每当需要部署经过训练的模型时,创建模型的对象并从文件中加载参数,这是 Pytorch 创建者推荐的方法。

目录

模型的存储、加载

模型的部署


模型的存储、加载

承接上文,完成模型的训练后,需要将训练的参数存储在文件中,以供部署和使用。

复制代码
#定义路径
path2weights="./models/weights.pt"
#将state_dict存储到文件
torch.save(model.state_dict(), path2weights)

为了从文件中加载模型参数,定义一个 Net 的对象类并加载state_dict

复制代码
#定义随机初始权重模型
_model = Net()
#加载文件中的state_dict
weights=torch.load(path2weights)
#赋予权重
_model.load_state_dict(weights)

加载成功如下

模型的部署

将模型加载到内存中后,可以将新数据传递给模型

复制代码
import matplotlib.pyplot as plt
#抽取一个n=10张量
n=10
x= x_val[n]
y=y_val[n]
print(x.shape)
plt.imshow(x.numpy()[0],cmap="gray")

对张量进行预处理

复制代码
#将维度扩展为 1*C*H*W
x= x.unsqueeze(0)
#转换为torch.float32格式
x=x.type(torch.float)

得到模型预测

复制代码
#获取模型输出
output=_model(x)
#获取预测结果
pred = output.argmax(dim=1, keepdim=True)
print (pred.item(),y.item())
相关推荐
week_泽6 小时前
第4课:为什么记忆能力如此重要 - 学习笔记_4
人工智能·笔记·学习·ai agent
week_泽7 小时前
第6课:如何管理短期记忆和长期记忆 - 学习笔记_6
人工智能·笔记·学习·ai agent
之歆13 小时前
Spring AI入门到实战到原理源码-MCP
java·人工智能·spring
知乎的哥廷根数学学派14 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
且去填词14 小时前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
待续30114 小时前
订阅了 Qoder 之后,我想通过这篇文章分享一些个人使用心得和感受。
人工智能
weixin_3975780214 小时前
人工智能发展历史
人工智能
人工干智能14 小时前
OpenAI Assistants API 中 client.beta.threads.messages.create方法,兼谈一星*和两星**解包
python·llm
databook14 小时前
当条形图遇上极坐标:径向与圆形条形图的视觉革命
python·数据分析·数据可视化
强盛小灵通专卖员14 小时前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡