Flink的CheckPoint与SavePoint

Flink的Checkpoint(检查点)和Savepoint(保存点)是两种不同的状态快照机制,主要区别如下:

1. ‌Checkpoint

  • 核心功能‌:周期性触发的容错机制,用于故障恢复时保证状态一致性57。
  • 触发方式‌:由JobManager周期性触发,通过Barrier机制实现分布式快照26。
  • 存储内容‌:保存所有算子的状态快照,支持Exactly-Once语义15。
  • 生命周期‌:自动管理,旧检查点会被清理以释放存储空间7。
  • 性能影响‌:高频检查点可能增加系统开销,需平衡间隔时间与恢复速度7。

2. ‌Savepoint

  • 核心功能‌:手动触发的全局状态快照,用于有计划的状态迁移或版本升级5。
  • 触发方式‌:通过命令行或API显式触发,生成完整应用状态副本5。
  • 存储内容‌:包含检查点数据及作业拓扑信息,支持跨集群或配置恢复5。
  • 生命周期‌:需手动维护,长期保留需额外存储成本5。
  • 用途扩展‌:支持作业暂停后从相同状态恢复,或Flink版本升级时的兼容性测试5。

3. ‌关键差异

特性 Checkpoint Savepoint
触发方式 自动周期性触发27 手动触发5
存储目标 故障恢复(短期)7 运维操作(长期)5
数据包含 仅状态快照1 状态+作业拓扑5
性能优化 增量快照(RocksDB支持)3 全量快照5

4. ‌技术实现

  • Checkpoint‌:基于Chandy-Lamport算法,通过Barrier对齐实现一致性快照26。
  • Savepoint‌:依赖Checkpoint机制生成,但需额外序列化作业元数据5。

两者共同构成Flink的容错与运维能力,Checkpoint保障实时可靠性,Savepoint提供灵活性运维支持

相关推荐
IT毕设梦工厂1 小时前
大数据毕业设计选题推荐-基于大数据的丙型肝炎患者数据可视化分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·spark·毕业设计·源码·bigdata
阿里云大数据AI技术1 小时前
【跨国数仓迁移最佳实践7】基于MaxCompute多租的大数据平台架构
大数据
阿里云大数据AI技术2 小时前
ODPS 十五周年实录 | Data + AI,MaxCompute 下一个15年的新增长引擎
大数据·python·sql
SelectDB2 小时前
2-5 倍性能提升,30% 成本降低,阿里云 SelectDB 存算分离架构助力波司登集团实现降本增效
大数据·数据库·数据分析
随心............2 小时前
Spark面试题
大数据·分布式·spark
mask哥3 小时前
详解flink SQL基础(四)
java·大数据·数据库·sql·微服务·flink
wan5555cn4 小时前
AI 时代“驯导师”职业发展方向探究
大数据·人工智能·笔记·深度学习
oYiMiYangGuang1235 小时前
【广告系列】流量归因模型
大数据·人工智能
我要学习别拦我~5 小时前
读《精益数据分析》:A/B测试与多变量测试
大数据·数据分析