Flink的CheckPoint与SavePoint

Flink的Checkpoint(检查点)和Savepoint(保存点)是两种不同的状态快照机制,主要区别如下:

1. ‌Checkpoint

  • 核心功能‌:周期性触发的容错机制,用于故障恢复时保证状态一致性57。
  • 触发方式‌:由JobManager周期性触发,通过Barrier机制实现分布式快照26。
  • 存储内容‌:保存所有算子的状态快照,支持Exactly-Once语义15。
  • 生命周期‌:自动管理,旧检查点会被清理以释放存储空间7。
  • 性能影响‌:高频检查点可能增加系统开销,需平衡间隔时间与恢复速度7。

2. ‌Savepoint

  • 核心功能‌:手动触发的全局状态快照,用于有计划的状态迁移或版本升级5。
  • 触发方式‌:通过命令行或API显式触发,生成完整应用状态副本5。
  • 存储内容‌:包含检查点数据及作业拓扑信息,支持跨集群或配置恢复5。
  • 生命周期‌:需手动维护,长期保留需额外存储成本5。
  • 用途扩展‌:支持作业暂停后从相同状态恢复,或Flink版本升级时的兼容性测试5。

3. ‌关键差异

特性 Checkpoint Savepoint
触发方式 自动周期性触发27 手动触发5
存储目标 故障恢复(短期)7 运维操作(长期)5
数据包含 仅状态快照1 状态+作业拓扑5
性能优化 增量快照(RocksDB支持)3 全量快照5

4. ‌技术实现

  • Checkpoint‌:基于Chandy-Lamport算法,通过Barrier对齐实现一致性快照26。
  • Savepoint‌:依赖Checkpoint机制生成,但需额外序列化作业元数据5。

两者共同构成Flink的容错与运维能力,Checkpoint保障实时可靠性,Savepoint提供灵活性运维支持

相关推荐
汤姆yu19 小时前
基于大数据的出行方式推荐系统
大数据·出行方式推荐
bigdata-rookie20 小时前
Spark 部署模式
大数据·分布式·spark
芝麻开门-新起点20 小时前
贝壳GIS数据存储与房屋3D展示技术解析
大数据
玖日大大20 小时前
Gemini 3 全维度技术解析:从认知到落地实战指南
大数据
little_xianzhong1 天前
把一个本地项目导入gitee创建的仓库中
大数据·elasticsearch·gitee
金融小师妹1 天前
基于机器学习框架的上周行情复盘:非农数据与美联储政策信号的AI驱动解析
大数据·人工智能·深度学习·1024程序员节
Leo.yuan1 天前
2小时,我搭了一套物流分析看板
大数据·人工智能·金融·企业数字化·现金流
sheji34161 天前
【开题答辩全过程】以 基于Spark的药品库存可视化分析系统为例,包含答辩的问题和答案
大数据·分布式·spark
larance1 天前
spark-submit 常用方式
大数据·spark