Mac训练大模型:MLX-LM框架LoRA训练Qwen3并集成SwanLab进行可视化

MLX LM 是由 Apple 机器学习研究团队开发的开源 Python 软件包,专门用于在 Apple Silicon(M1、M2、M3 等芯片)上高效运行和微调大型语言模型(LLM)。它基于 MLX 框架,充分利用 Apple 的统一内存架构和 Metal 性能着色器(Metal Performance Shaders)来优化性能,特别适合在 Mac 设备上本地运行和开发 AI 模型。

你可以使用 MLX LM 快速进行模型训练,同时使用SwanLab进行实验跟踪与可视化。

1. 环境安装

bash 复制代码
pip install mlx-lm swanlab

2. Lora微调

使用mlx-lm训练LLM的流程非常简单,案例可以在 mlx-lm/examples 中找到。

下面主要以Lora微调为例,这是一个用Qwen3-0.6B模型进行Lora微调的MLX-LM配置文件:

yaml 复制代码
model: "Qwen/Qwen3-0.6B"
train: true
fine_tune_type: lora
optimizer: adamw
data: "mlx-community/WikiSQL"
seed: 0
num_layers: 16
batch_size: 4
iters: 1000
val_batches: 25
learning_rate: 1e-5
steps_per_report: 10
steps_per_eval: 200
resume_adapter_file: null
adapter_path: "adapters"
save_every: 100
test: false
test_batches: 100
max_seq_length: 2048
grad_checkpoint: false
lora_parameters:
  keys: ["self_attn.q_proj", "self_attn.v_proj"]
  rank: 8
  scale: 20.0
  dropout: 0.0

将这个配置文件保存到本地,文件名用qwen3_sft.yaml

然后使用下面的命令,就可以启动训练,并将训练过程记录到SwanLab上:

bash 复制代码
mlx_lm.lora --config qwen3_sft.yaml --report-to swanlab --project-name MLX-LM

3. 可视化效果

相关推荐
心疼你的一切18 小时前
解锁CANN仓库核心能力:从零搭建AIGC轻量文本生成实战(附代码+流程图)
数据仓库·深度学习·aigc·流程图·cann
初恋叫萱萱18 小时前
CANN 生态中的图优化引擎:深入 `ge` 项目实现模型自动调优
人工智能
不爱学英文的码字机器18 小时前
深度解读CANN生态核心仓库——catlass,打造高效可扩展的分类器技术底座
人工智能·cann
Kiyra18 小时前
作为后端开发你不得不知的 AI 知识——RAG
人工智能·语言模型
共享家952718 小时前
Vibe Coding 与 LangChain、LangGraph 的协同进化
人工智能
dvlinker18 小时前
2026远程桌面安全白皮书:ToDesk/TeamViewer/向日葵核心安全性与合规性横向测评
人工智能
2的n次方_18 小时前
CANN ascend-transformer-boost 深度解析:针对大模型的高性能融合算子库与算力优化机制
人工智能·深度学习·transformer
熊猫_豆豆18 小时前
YOLOP车道检测
人工智能·python·算法
nimadan1218 小时前
**热门短剧小说扫榜工具2025推荐,精准捕捉爆款趋势与流量
人工智能·python
qq_124987075319 小时前
基于JavaWeb的大学生房屋租赁系统(源码+论文+部署+安装)
java·数据库·人工智能·spring boot·计算机视觉·毕业设计·计算机毕业设计