HarvardX TinyML小笔记2(番外3:数据工程)

课程链接:Course | edX

数据工程其实就是做数据集,这东西没有太多技术含量,但是可以说是决定ML成败的关键一环。毕竟有80%的时间耗费都是在高质量的数据集上。

数据决定模型上限,算法与工程仅决定逼近上限的程度。

整体步骤大概就是确定需求,收集,提炼,维持。流程倒是不难理解,首先明确需要什么样的数据集,然后用多种方式去收集,之后对数据处理验证,最后保管数据。

收集数据集的时候要注意开源协议,分析能不能使用。

数据来源的四种方式:传感器,众包,产品用户,付费用户。

总之好数据集的创建很麻烦。。。

列了几个可以直接用的数据集,Common Voice,COCO,ImageNet等等。后面有机会再看吧。

简单介绍了一下Google的Speech Commands。

Speech Commands

https://arxiv.org/pdf/1804.03209.pdf

  • What are Speech Commands?
  • What was People's motivation behind building Speech Commands?
  • How is Keyword Spotting different from traditional speech recognition models?
  • What are the important metrics in speech recognition for KWS?

之后介绍了一个Web的语音收集平台,Common Voice,都是白嫖很多自愿者。。。

主页:https://commonvoice.mozilla.org/

然后说了下如何复用已有的数据集。

最后还是老生常谈的数码平权,消除偏见。有一说一,不管实际如何,起码美国的学校对这方面还是很重视的。确实未来AI时代,一些细小的偏见都可能对人类社会带来深远影响。

最后还是说明,如果数据集选的不好,就算在程序中训练的准确率再高,程序可能也有问题。

So just because your Colab says you've got a certain accuracy does not mean that it's actually doing its job well from a TinyML application standpoint.

最后的总结,其实看这一篇就够了:Course | edX

相关推荐
idkmn_3 分钟前
Daily AI 20251219 (PyTorch基础回顾3)
人工智能·pytorch·python·深度学习·神经网络
最晚的py14 分钟前
深度学习简介
深度学习
baby_hua30 分钟前
20251011_Pytorch深度学习(快速预览)
人工智能·pytorch·深度学习
natide31 分钟前
词汇/表达差异-1-编辑距离-莱文斯坦距离-Levenshtein
人工智能·深度学习·自然语言处理·知识图谱
小白狮ww39 分钟前
abaqus 算例教程:考虑动水压力的 koyna 地震非线性动力响应分析
人工智能·深度学习·机器学习·abaqus·材料科学·工程模拟·混凝土抗震分析
小白狮ww1 小时前
当 OCR 模型开始「理解整页文档」:HunyuanOCR 的端到端之路
人工智能·深度学习·机器学习·ocr·文字识别·文档处理·腾讯混元
2401_841495641 小时前
【自然语言处理】共生与引领:自然语言处理与人工智能的深度绑定与协同演进
人工智能·深度学习·自然语言处理·多模态·通用智能·规则驱动·认知智能
盼小辉丶1 小时前
PyTorch实战(17)——神经风格迁移
pytorch·深度学习·风格迁移
Caesar Zou1 小时前
Cannot allocate memory——训练时视频解码为什么会内存越跑越大
人工智能·深度学习
BFT白芙堂1 小时前
Franka Research 3 进阶应用:基于神经网络的 ORACLE 交互控制策略深度解析
人工智能·深度学习·神经网络·oracle·机器人·人机交互·vr