HarvardX TinyML小笔记2(番外3:数据工程)

课程链接:Course | edX

数据工程其实就是做数据集,这东西没有太多技术含量,但是可以说是决定ML成败的关键一环。毕竟有80%的时间耗费都是在高质量的数据集上。

数据决定模型上限,算法与工程仅决定逼近上限的程度。

整体步骤大概就是确定需求,收集,提炼,维持。流程倒是不难理解,首先明确需要什么样的数据集,然后用多种方式去收集,之后对数据处理验证,最后保管数据。

收集数据集的时候要注意开源协议,分析能不能使用。

数据来源的四种方式:传感器,众包,产品用户,付费用户。

总之好数据集的创建很麻烦。。。

列了几个可以直接用的数据集,Common Voice,COCO,ImageNet等等。后面有机会再看吧。

简单介绍了一下Google的Speech Commands。

Speech Commands

https://arxiv.org/pdf/1804.03209.pdf

  • What are Speech Commands?
  • What was People's motivation behind building Speech Commands?
  • How is Keyword Spotting different from traditional speech recognition models?
  • What are the important metrics in speech recognition for KWS?

之后介绍了一个Web的语音收集平台,Common Voice,都是白嫖很多自愿者。。。

主页:https://commonvoice.mozilla.org/

然后说了下如何复用已有的数据集。

最后还是老生常谈的数码平权,消除偏见。有一说一,不管实际如何,起码美国的学校对这方面还是很重视的。确实未来AI时代,一些细小的偏见都可能对人类社会带来深远影响。

最后还是说明,如果数据集选的不好,就算在程序中训练的准确率再高,程序可能也有问题。

So just because your Colab says you've got a certain accuracy does not mean that it's actually doing its job well from a TinyML application standpoint.

最后的总结,其实看这一篇就够了:Course | edX

相关推荐
薛定谔的猫19822 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
机 _ 长4 小时前
YOLO26 改进 | 基于特征蒸馏 | 知识蒸馏 (Response & Feature-based Distillation)
python·深度学习·机器学习
龙山云仓5 小时前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene
jay神6 小时前
基于YOLOv8的木材表面缺陷检测系统
人工智能·深度学习·yolo·计算机视觉·毕业设计
songyuc6 小时前
【Llava】load_pretrained_model() 说明
人工智能·深度学习
名为沙丁鱼的猫7297 小时前
【MCP 协议层(Protocol layer)详解】:深入分析MCP Python SDK中协议层的实现机制
人工智能·深度学习·神经网络·机器学习·自然语言处理·nlp
小Tomkk8 小时前
PyTorch +YOLO + Label Studio + 图像识别 深度学习项目实战 (二)
pytorch·深度学习·yolo
龙腾亚太8 小时前
航空零部件加工变形难题破解:数字孪生 + 深度学习的精度控制实战
人工智能·深度学习·数字孪生·ai工程师·ai证书·转型ai
Coding茶水间8 小时前
基于深度学习的输电电力设备检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习