企业级AI应用,Dify集成RAGFlow知识库保姆教程

第一部分:RAGFlow 端配置

在 Dify 能够调用之前,确保 RAGFlow 已经就绪并提供了可访问的 API。

步骤 1: 确保 RAGFlow 正常运行

具体可以参考:

https://blog.csdn.net/qq_35354529/article/details/151149191?spm=1001.2014.3001.5502

注意启动命令使用docker compose -p ragflow up -d

  • RAGFlow 服务应该已经通过 Docker 正常启动。
  • 通过浏览器访问 RAGFlow 的 Web 界面(通常是 http://你的服务器IP:80我这个访问的地址是http://服务器ID:8580),确保可以正常登录。
步骤 2: 创建知识库并上传文档
  1. 登录 RAGFlow 后,点击"知识库" -> "新建知识库",创建一个新的知识库。
  2. 进入该知识库,点击"上传文件",将包含复杂表格和图片的 PDF 文档上传。
步骤 3: 创建 API 密钥
  1. 点击页面右上角的"头像"图标。
  2. 创建API KEY

API KEY: ragflow-E5ZW***************************** 后续提供给Dify调用RAGFlow使用

  1. 记录RAGFlow知识库ID
步骤 4: 记录 API 端点信息
  • RAGFlow API 基地址(Base URL) :通常是 http://RAGFlow服务器IP:8580
  • 检索接口路径/api/v1/retrieve
  • 完整的检索端点 URLhttp://RAGFlow服务器IP:8580/api/v1/retrieve
  • RAGFlow知识库ID:581af2b2889a11f082420242ac1f0006

第二部分:Dify 端配置

现在,在 Dify 中创建一个应用,并通过工作流调用 RAGFlow知识库。

步骤 1: 在 Dify 中创建一个外部知识库
  1. 创建外部知识库API

  2. 召回测试

API Endpoint: http://RAGFlow服务器IP:8580/api/v1/dify

API KEY: RAGFlow提供的API KEY

步骤 2: 在 Dify 中创建新应用
  1. 登录你的 Dify 控制台。
  2. 点击"创建新应用",选择"ChatFlow"
步骤 3: 构建工作流

进入应用的工作流编辑界面,按以下顺序添加和配置节点:

节点 1: 开始

  • 拖入一个 "开始" 节点。它代表了用户输入的提问。

节点 2: 知识检索

  • 拖入一个 "知识检索" 节点。设置知识库。

节点 3: LLM(大语言模型)

  1. 拖入一个 "LLM" 节点。
  2. 设计系统提示词
  3. 可以根据需要调整温度和最大生成长度等参数。
python 复制代码
你是一个专业的问答助手。请严格根据<知识库内容>来回答用户的问题。

# 知识库内容:
{{#context#}}

# 用户问题:
{{#sys.query#}}

# 回答要求:
1.  **精准忠实**:答案必须完全源自上述<知识库内容>。严禁编造、演绎或使用外部知识。
2.  **清晰有条理**:组织你的答案,使其逻辑清晰、易于理解。可以使用列表、分点等方式。
3.  **引用溯源**:如果<知识库内容>中包含了明确的来源(如文件名、URL、章节名),请在答案末尾以"来源:[此处填写来源]"的格式注明。
4.  **不确定性处理**:如果<知识库内容>中**完全没有**与用户问题相关的信息,请明确告知用户"根据现有资料,我无法找到相关问题答案。"
5.  **完整性**:尽量提供完整的信息,如果问题涉及多个方面,请覆盖所有方面。

现在,请开始回答。

节点 4: 直接回复

  1. 拖入一个 "直接回复" 节点。

  2. 将其连接到"LLM"节点之后。这个节点会将 LLM 生成的最终答案返回给用户。

测试:

关键注意事项

  1. 使用 Docker 网络隔离:为每个项目创建独立的网络
  2. 使用环境变量文件 :为每个项目创建独立的 .env 文件
  3. 启动RAGFlow与Dify
python 复制代码
# 在 Dify 目录中,使用项目名 "dify"
cd /dify1.8/dify-1.8.0/docker
docker compose -p dify down
docker compose -p dify up -d

# 在 RAGFlow 目录中,使用项目名 "ragflow"
cd /path/to/ragflow
docker compose -p ragflow down
docker compose -p ragflow up -d
相关推荐
云雾J视界5 小时前
人月神话今犹在:从布鲁克斯法则到阿里云AI代码生成
人工智能·项目管理·ai编程·人月神话·人机月
算家计算5 小时前
DeepSeek被曝年底推出AI智能体,下一代人机交互时代要来了?
人工智能·agent·deepseek
HenrySmale5 小时前
01 神经网络简介
人工智能·深度学习·神经网络
爱补鱼的猫猫5 小时前
pytorch可视化工具(训练评估:Tensorboard、swanlab)
人工智能·pytorch·python
算家计算5 小时前
腾讯最新开源HunyuanVideo-Foley本地部署教程:端到端TV2A框架,REPA策略+MMDiT架构,重新定义视频音效新SOTA!
人工智能·开源
moonsheeper5 小时前
NLP技术爬取
人工智能·自然语言处理
拆房老料6 小时前
大语言模型基础-Transformer之上下文
人工智能·语言模型·transformer
zzywxc7876 小时前
AI行业应用:金融、医疗、教育、制造业的落地案例全解析
人工智能·深度学习·spring·机器学习·金融·数据挖掘
Ai工具分享6 小时前
视频增强AI哪个效果好?实战对比帮你找到最适合的工具
人工智能·音视频
山烛6 小时前
OpenCV 模板匹配
人工智能·python·opencv·计算机视觉·目标跟踪·模板匹配