Aspose.Words for .NET 25.7:支持自建大语言模型(LLM),实现更安全灵活的AI文档处理功能

随着 ++Aspose.Words for .NET 25.7++ 的发布,开发者迎来了一个重要新特性------支持接入 自建(Self-Hosted)大语言模型(LLM),在提升文档处理智能化水平的同时,进一步保障数据隐私与系统可控性,避免依赖第三方托管 API。

Aspose.Words官方试用版免费下载


为什么选择自建 LLM?
  • 数据主权:敏感文档可完全保留在本地或企业内部基础设施中,无需外部传输。

  • 成本可控:通过自有硬件运行模型,避免额外的云服务调用费用。

  • 高度定制:支持自定义接口或本地化部署的专属模型,灵活适配业务场景。


如何在 Aspose.Words 中使用自建 LLM

++Aspose.Words++.AI 命名空间为用户提供了丰富的 AI 功能,如文档翻译、摘要生成、语法检查等。除支持调用 OpenAI、Google 等云端模型外,开发者还可以通过配置切换到自建 LLM。

示例代码:

复制代码
public void SelfHostedModel()
{
    Document doc = new Document(MyDir + "Big document.docx");

    string apiKey = Environment.GetEnvironmentVariable("API_KEY");
    // Use OpenAI generative language models.
    AiModel model = new CustomAiModel().WithApiKey(apiKey);

    Document translatedDoc = model.Translate(doc, Language.Russian);
    translatedDoc.Save(ArtifactsDir + "AI.SelfHostedModel.docx");
}

// Custom self-hosted AI model.
internal class CustomAiModel : OpenAiModel
{
    protected override string Url
    {
        get { return "https://localhost/"; }
    }

    protected override string Name
    {
        get { return "my-model-24b"; }
    }
}
典型应用场景
  • 企业文档处理:在本地环境中翻译涉密法律、财务文档,避免数据外泄风险。

  • 离线部署:在高安全或隔离网络环境下,运行本地训练或优化过的大模型。

  • 成本优化:利用本地 GPU 推理,降低云端 API 调用费用。


通过该功能,用户可以在保留**++Aspose.Words++** 强大 AI 功能的同时,实现对 AI 基础设施的完全掌控,打造 更安全、更高效、更灵活 的文档智能化解决方案。

相关推荐
huazi-J41 分钟前
Datawhale 大模型基础与量化微调 task0:Tokenizer
语言模型·大模型·tokenizer·datawhale
雅欣鱼子酱2 小时前
USB Type-C PD取电(诱骗,诱电,SINK),筋膜枪专用取电芯片
网络·人工智能·芯片·电子元器件
kisshuan123967 小时前
【深度学习】使用RetinaNet+X101-32x4d_FPN_GHM模型实现茶芽检测与识别_1
人工智能·深度学习
Learn Beyond Limits7 小时前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
崔庆才丨静觅8 小时前
0代码生成4K高清图!ACE Data Platform × SeeDream 专属方案:小白/商家闭眼冲
人工智能·api
追逐时光者8 小时前
精选 10 款 .NET 开源免费、功能强大的 Windows 效率软件
后端·.net
追逐时光者8 小时前
一款开源、免费的 WPF 自定义控件集
后端·.net
哥布林学者8 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (六)长短期记忆 LSTM
深度学习·ai
qq_356448378 小时前
机器学习基本概念与梯度下降
人工智能
水如烟9 小时前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能