论文阅读:ACL 2023 MEETINGQA: Extractive Question-Answering on Meeting Transcripts

总目录 大模型相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328

https://aclanthology.org/2023.acl-long.837/

速览

ACL 2023论文:会议记录问答新突破,挑战NLP极限

该论文题为《MEETINGQA: Extractive Question-Answering on Meeting Transcripts》,由来自北卡罗来纳大学教堂山分校和Adobe Research的研究人员共同撰写,发表于2023年ACL会议。论文聚焦于会议记录中的问答任务,旨在填补会议记录自然语言处理领域的空白。

论文指出,随着在线会议平台的普及和自动语音识别技术的进步,会议记录成为自然语言处理任务的新兴领域。尽管已有研究主要集中在会议记录的总结和行动项提取上,但会议讨论中的问答(QA)部分对于理解会议内容至关重要。为此,研究者们引入了MEETINGQA,这是一个包含会议参与者提出的问题及其对应回答的抽取式问答数据集。数据集中的问题可以是开放性的,旨在促进讨论,而答案可能是多跨度的,涉及多个发言人。

该研究通过全面的实证研究,测试了包括长上下文语言模型和最新指令调整模型在内的多个强大基线模型。结果显示,这些模型在该任务上的表现远低于人类水平(F1=57.3对比人类的F1=84.6),凸显了这一任务的挑战性。研究者们还分析了MEETINGQA数据集的多个方面,包括问题类型、长度分布以及答案类型等,发现会议记录问答任务具有独特性,如问题通常较长且不以"wh"开头,答案可能是多跨度和多发言人贡献的。

此外,论文还探讨了不同的上下文检索策略、模型架构以及数据增强方法,以期提升模型在会议记录问答任务上的性能。研究者们通过实验发现,基于位置的上下文检索策略优于基于评分的策略,且长上下文模型在处理此类任务时面临挑战。论文的结论强调了当前模型在会议记录问答任务上的局限性,并为未来的研究提供了方向,即如何进一步提升模型性能以缩小与人类表现的差距。

相关推荐
觉醒大王2 天前
哪些文章会被我拒稿?
论文阅读·笔记·深度学习·考研·自然语言处理·html·学习方法
觉醒大王2 天前
强女思维:着急,是贪欲外显的相。
java·论文阅读·笔记·深度学习·学习·自然语言处理·学习方法
张较瘦_2 天前
[论文阅读] AI | 用机器学习给深度学习库“体检”:大幅提升测试效率的新思路
论文阅读·人工智能·机器学习
m0_650108243 天前
IntNet:面向协同自动驾驶的通信驱动多智能体强化学习框架
论文阅读·marl·多智能体系统·网联自动驾驶·意图共享·自适应通讯·端到端协同
m0_650108243 天前
Raw2Drive:基于对齐世界模型的端到端自动驾驶强化学习方案
论文阅读·机器人·强化学习·端到端自动驾驶·双流架构·引导机制·mbrl自动驾驶
快降重科研小助手3 天前
前瞻与规范:AIGC降重API的技术演进与负责任使用
论文阅读·aigc·ai写作·降重·降ai·快降重
源于花海4 天前
IEEE TIE期刊论文学习——基于元学习与小样本重训练的锂离子电池健康状态估计方法
论文阅读·元学习·电池健康管理·并行网络·小样本重训练
m0_650108244 天前
UniDrive-WM:自动驾驶领域的统一理解、规划与生成世界模型
论文阅读·自动驾驶·轨迹规划·感知、规划与生成融合·场景理解·未来图像生成
蓝田生玉1234 天前
LLaMA论文阅读笔记
论文阅读·笔记·llama
*西瓜4 天前
基于深度学习的视觉水位识别技术与装备
论文阅读·深度学习