算法题(203):矩阵最小路径和

审题:

本题需要我们从(1,1)出发,然后通过各种路径走到(n,m)点,并找出所有路径中路径和最小的总和值

思路:
方法一:动态规划

**(1)状态表示:**f[i][j]表示从(1,1)到达点(i,j)时所有路径中路径和最小的路径值

**(2)状态转移方程:**由于题目中的移动规则是可以向右和向下移动,所以我们的转移方程也是分两种的

图示:

第一种:向下移动

路径和是当前节点的值加上前一个节点的路径总和,即(i-1,j)点的f值加当前节点的值

第二种:向右移动

同理,由(i,j-1)的f值加当前节点的值

(3)初始化:有两个特殊处理

首先,为了确保f[1][1]正确初始化为x[1][1],我们的f[0][1]/f[1][0]至少有一个初始化为0

图示:

其次,为了防止无效位置妨碍边缘节点的判断,我们的边缘无效位置需要初始化为一个不可能计入最短路径的值,也就是一个max值(0x3f3f3f3f)

图示:

(4)填表顺序:从上到下,从左到右

因为我们某个节点的f需要根据其左方和上方的f求,所以一定要先将上方和左方的f先计算出来

(5)答案输出:直接输出f[n][m]即可

解题:

cpp 复制代码
#include<iostream>
#include<cstring>
using namespace std;
const int N = 510;
int n, m;
int x[N][N], f[N][N];
int main()
{
	//数据录入
	cin >> n >> m;
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= m; j++)
		{
			cin >> x[i][j];
		}
	}
	//初始化
	memset(f, 0x3f3f3f3f, sizeof f);
	f[1][0] = 0;
	//填dp表
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= m; j++)
		{
			f[i][j] = min(f[i - 1][j], f[i][j - 1]) + x[i][j];
		}
	}
	//输出数据
	cout << f[n][m] << endl;
	return 0;
}

memset需要包含cstring头文件才可以使用

矩阵的最小路径和_牛客题霸_牛客网

相关推荐
补三补四15 小时前
卡尔曼滤波
python·算法·机器学习·数据挖掘
WaWaJie_Ngen15 小时前
LevOJ P2080 炼金铺 II [矩阵解法]
c++·线性代数·算法·矩阵
今后12316 小时前
【数据结构】堆、计数、桶、基数排序的实现
数据结构·算法·堆排序·计数排序·桶排序·基数排序
敲代码的嘎仔16 小时前
牛客算法基础noob59 简写单词
java·开发语言·数据结构·程序人生·算法·leetcode·学习方法
少许极端16 小时前
算法奇妙屋(四)-归并分治
java·算法·排序算法·分治·归并
fly spider16 小时前
3.数组算法
算法
天天向上的鹿茸17 小时前
用矩阵实现元素绕不定点旋转
前端·线性代数·矩阵
Haohao+++19 小时前
Stable Diffusion原理解析
人工智能·深度学习·算法
ideaout技术团队1 天前
leetcode学习笔记2:多数元素(摩尔投票算法)
学习·算法·leetcode
代码充电宝1 天前
LeetCode 算法题【简单】283. 移动零
java·算法·leetcode·职场和发展