算法题(203):矩阵最小路径和

审题:

本题需要我们从(1,1)出发,然后通过各种路径走到(n,m)点,并找出所有路径中路径和最小的总和值

思路:
方法一:动态规划

**(1)状态表示:**f[i][j]表示从(1,1)到达点(i,j)时所有路径中路径和最小的路径值

**(2)状态转移方程:**由于题目中的移动规则是可以向右和向下移动,所以我们的转移方程也是分两种的

图示:

第一种:向下移动

路径和是当前节点的值加上前一个节点的路径总和,即(i-1,j)点的f值加当前节点的值

第二种:向右移动

同理,由(i,j-1)的f值加当前节点的值

(3)初始化:有两个特殊处理

首先,为了确保f[1][1]正确初始化为x[1][1],我们的f[0][1]/f[1][0]至少有一个初始化为0

图示:

其次,为了防止无效位置妨碍边缘节点的判断,我们的边缘无效位置需要初始化为一个不可能计入最短路径的值,也就是一个max值(0x3f3f3f3f)

图示:

(4)填表顺序:从上到下,从左到右

因为我们某个节点的f需要根据其左方和上方的f求,所以一定要先将上方和左方的f先计算出来

(5)答案输出:直接输出f[n][m]即可

解题:

cpp 复制代码
#include<iostream>
#include<cstring>
using namespace std;
const int N = 510;
int n, m;
int x[N][N], f[N][N];
int main()
{
	//数据录入
	cin >> n >> m;
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= m; j++)
		{
			cin >> x[i][j];
		}
	}
	//初始化
	memset(f, 0x3f3f3f3f, sizeof f);
	f[1][0] = 0;
	//填dp表
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= m; j++)
		{
			f[i][j] = min(f[i - 1][j], f[i][j - 1]) + x[i][j];
		}
	}
	//输出数据
	cout << f[n][m] << endl;
	return 0;
}

memset需要包含cstring头文件才可以使用

矩阵的最小路径和_牛客题霸_牛客网

相关推荐
熊猫_豆豆11 分钟前
YOLOP车道检测
人工智能·python·算法
艾莉丝努力练剑26 分钟前
【Linux:文件】Ext系列文件系统(初阶)
大数据·linux·运维·服务器·c++·人工智能·算法
劈星斩月31 分钟前
线性代数-3Blue1Brown《线性代数的本质》特征向量与特征值(12)
线性代数·特征值·特征向量·特征方程
偷吃的耗子1 小时前
【CNN算法理解】:CNN平移不变性详解:数学原理与实例
人工智能·算法·cnn
dazzle2 小时前
机器学习算法原理与实践-入门(三):使用数学方法实现KNN
人工智能·算法·机器学习
那个村的李富贵2 小时前
智能炼金术:CANN加速的新材料AI设计系统
人工智能·算法·aigc·cann
张张努力变强2 小时前
C++ STL string 类:常用接口 + auto + 范围 for全攻略,字符串操作效率拉满
开发语言·数据结构·c++·算法·stl
万岳科技系统开发2 小时前
食堂采购系统源码库存扣减算法与并发控制实现详解
java·前端·数据库·算法
池央2 小时前
ops-nn 算子库中的数据布局与混合精度策略:卷积、矩阵乘法与 RNN 的优化实践
rnn·线性代数·矩阵
张登杰踩2 小时前
MCR ALS 多元曲线分辨算法详解
算法