ppliteseg改rknn,部署在嵌入式板,加速模型

python 复制代码
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr, reshape, transpose, concat, split
from paddle.nn.initializer import KaimingNormal


def channel_shuffle(x, groups):
    x_shape = paddle.shape(x)
    batch_size, height, width = x_shape[0], x_shape[2], x_shape[3]
    num_channels = x.shape[1]
    channels_per_group = num_channels // groups

    # reshape
    x = reshape(
        x=x, shape=[batch_size, groups, channels_per_group, height, width])

    # transpose
    x = transpose(x=x, perm=[0, 2, 1, 3, 4])

    # flatten
    x = reshape(x=x, shape=[batch_size, num_channels, height, width])

    return x


class ConvBNLayer(nn.Layer):
    def __init__(
            self,
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding,
            groups=1,
            act=None,
            name=None, ):
        super(ConvBNLayer, self).__init__()
        self._conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=ParamAttr(
                initializer=KaimingNormal(), name=name + "_weights"),
            bias_attr=False)

        self._batch_norm = nn.BatchNorm(
            out_channels,
            param_attr=ParamAttr(name=name + "_bn_scale"),
            bias_attr=ParamAttr(name=name + "_bn_offset"),
            act=act,
            moving_mean_name=name + "_bn_mean",
            moving_variance_name=name + "_bn_variance")

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class InvertedResidual(nn.Layer):
    def __init__(self, in_channels, out_channels, stride, act="relu",
                 name=None):
        super(InvertedResidual, self).__init__()
        self._conv_pw = ConvBNLayer(
            in_channels=in_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act,
            name='stage_' + name + '_conv1')
        self._conv_dw = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=out_channels // 2,
            act=None,
            name='stage_' + name + '_conv2')
        self._conv_linear = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act,
            name='stage_' + name + '_conv3')

    def forward(self, inputs):
        x1, x2 = split(
            inputs,
            num_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2],
            axis=1)
        x2 = self._conv_pw(x2)
        x2 = self._conv_dw(x2)
        x2 = self._conv_linear(x2)
        out = concat([x1, x2], axis=1)
        return channel_shuffle(out, 2)


class InvertedResidualDS(nn.Layer):
    def __init__(self, in_channels, out_channels, stride, act="relu",
                 name=None):
        super(InvertedResidualDS, self).__init__()

        # branch1
        self._conv_dw_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=in_channels,
            act=None,
            name='stage_' + name + '_conv4')
        self._conv_linear_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act,
            name='stage_' + name + '_conv5')
        # branch2
        self._conv_pw_2 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act,
            name='stage_' + name + '_conv1')
        self._conv_dw_2 = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=out_channels // 2,
            act=None,
            name='stage_' + name + '_conv2')
        self._conv_linear_2 = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act,
            name='stage_' + name + '_conv3')

    def forward(self, inputs):
        x1 = self._conv_dw_1(inputs)
        x1 = self._conv_linear_1(x1)
        x2 = self._conv_pw_2(inputs)
        x2 = self._conv_dw_2(x2)
        x2 = self._conv_linear_2(x2)
        out = concat([x1, x2], axis=1)

        return channel_shuffle(out, 2)


class ShuffleNet(nn.Layer):
    def __init__(self, scale=1.0, act="relu", in_channels=3, pretrained=None):
        super(ShuffleNet, self).__init__()
        self.scale = scale
        self.pretrained = pretrained
        stage_repeats = [4, 8, 4]

        if scale == 0.25:
            stage_out_channels = [-1, 24, 24, 48, 96, 512]
        elif scale == 0.33:
            stage_out_channels = [-1, 24, 32, 64, 128, 512]
        elif scale == 0.5:
            stage_out_channels = [-1, 24, 48, 96, 192, 1024]
        elif scale == 1.0:
            stage_out_channels = [-1, 24, 116, 232, 464, 1024]
        elif scale == 1.5:
            stage_out_channels = [-1, 24, 176, 352, 704, 1024]
        elif scale == 2.0:
            stage_out_channels = [-1, 24, 224, 488, 976, 2048]
        else:
            raise NotImplementedError("This scale size:[" + str(scale) +
                                      "] is not implemented!")

        self.out_index = [3, 11, 15]
        self.feat_channels = stage_out_channels[1:5]

        # 1. conv1
        self._conv1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=stage_out_channels[1],
            kernel_size=3,
            stride=2,
            padding=1,
            act=act,
            name='stage1_conv')
        self._max_pool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)

        # 2. bottleneck sequences
        self._block_list = []
        for stage_id, num_repeat in enumerate(stage_repeats):
            for i in range(num_repeat):
                if i == 0:
                    block = self.add_sublayer(
                        name=str(stage_id + 2) + '_' + str(i + 1),
                        sublayer=InvertedResidualDS(
                            in_channels=stage_out_channels[stage_id + 1],
                            out_channels=stage_out_channels[stage_id + 2],
                            stride=2,
                            act=act,
                            name=str(stage_id + 2) + '_' + str(i + 1)))
                else:
                    block = self.add_sublayer(
                        name=str(stage_id + 2) + '_' + str(i + 1),
                        sublayer=InvertedResidual(
                            in_channels=stage_out_channels[stage_id + 2],
                            out_channels=stage_out_channels[stage_id + 2],
                            stride=1,
                            act=act,
                            name=str(stage_id + 2) + '_' + str(i + 1)))
                self._block_list.append(block)

    def forward(self, inputs):
        feat_list = []

        y = self._conv1(inputs)
        y = self._max_pool(y)
        feat_list.append(y)

        for idx, inv in enumerate(self._block_list):
            y = inv(y)
            if idx in self.out_index:
                feat_list.append(y)
        return feat_list


def ShuffleNetV2_x0_25(**kwargs):
    model = ShuffleNet(scale=0.25, **kwargs)
    return model


class ConvBNReLU(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 padding='same',
                 **kwargs):
        super().__init__()

        self._conv = nn.Conv2D(
            in_channels, out_channels, kernel_size, padding=padding, **kwargs)
        self._batch_norm = nn.BatchNorm2D(out_channels, data_format='NCHW')
        self._relu = nn.layer.activation.ReLU()

    def forward(self, x):
        x = self._conv(x)
        x = self._batch_norm(x)
        x = self._relu(x)
        return x


class ConvBN(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 padding='same',
                 **kwargs):
        super().__init__()
        self._conv = nn.Conv2D(
            in_channels, out_channels, kernel_size, padding=padding, **kwargs)
        self._batch_norm = nn.BatchNorm2D(out_channels, data_format='NCHW')

    def forward(self, x):
        x = self._conv(x)
        x = self._batch_norm(x)
        return x


class UAFM(nn.Layer):
    """
    The base of Unified Attention Fusion Module.
    Args:
        x_ch (int): The channel of x tensor, which is the low level feature.
        y_ch (int): The channel of y tensor, which is the high level feature.
        out_ch (int): The channel of output tensor.
        ksize (int, optional): The kernel size of the conv for x tensor. Default: 3.
        resize_mode (str, optional): The resize model in unsampling y tensor. Default: bilinear.
    """

    def __init__(self, x_ch, y_ch, out_ch, ksize=3, resize_mode='bilinear'):
        super().__init__()
        self.conv_x = ConvBNReLU(
            x_ch, y_ch, kernel_size=ksize, padding=ksize // 2, bias_attr=False)
        self.conv_out = ConvBNReLU(
            y_ch, out_ch, kernel_size=3, padding=1, bias_attr=False)
        self.resize_mode = resize_mode

    def check(self, x, y):
        x_h, x_w = x.shape[2:]
        y_h, y_w = y.shape[2:]

    def prepare(self, x, y):
        x = self.prepare_x(x, y)
        y = self.prepare_y(x, y)
        return x, y

    def prepare_x(self, x, y):
        x = self.conv_x(x)
        return x

    def prepare_y(self, x, y):
        y_up = F.interpolate(y, paddle.shape(x)[2:], mode=self.resize_mode)
        return y_up

    def fuse(self, x, y):
        out = x + y
        out = self.conv_out(out)
        return out

    def forward(self, x, y):
        """
        Args:
            x (Tensor): The low level feature.
            y (Tensor): The high level feature.
        """
        self.check(x, y)
        x, y = self.prepare(x, y)
        out = self.fuse(x, y)
        return out


def avg_reduce_channel(x):
    # Reduce channel by avg
    # Return cat([avg_ch_0, avg_ch_1, ...])
    if not isinstance(x, (list, tuple)):
        return paddle.mean(x, axis=1, keepdim=True)
    elif len(x) == 1:
        return paddle.mean(x[0], axis=1, keepdim=True)
    else:
        res = []
        for xi in x:
            res.append(paddle.mean(xi, axis=1, keepdim=True))
        return paddle.concat(res, axis=1)


class UAFM_SpAtten_S(UAFM):
    """
    The UAFM with spatial attention, which uses mean values.
    Args:
        x_ch (int): The channel of x tensor, which is the low level feature.
        y_ch (int): The channel of y tensor, which is the high level feature.
        out_ch (int): The channel of output tensor.
        ksize (int, optional): The kernel size of the conv for x tensor. Default: 3.
        resize_mode (str, optional): The resize model in unsampling y tensor. Default: bilinear.
    """

    def __init__(self, x_ch, y_ch, out_ch, ksize=3, resize_mode='bilinear'):
        super().__init__(x_ch, y_ch, out_ch, ksize, resize_mode)

        self.conv_xy_atten = nn.Sequential(
            ConvBNReLU(
                2, 2, kernel_size=3, padding=1, bias_attr=False),
            ConvBN(
                2, 1, kernel_size=3, padding=1, bias_attr=False))

    def fuse(self, x, y):
        """
        Args:
            x (Tensor): The low level feature.
            y (Tensor): The high level feature.
        """
        atten = avg_reduce_channel([x, y])
        atten = self.conv_xy_atten(atten)
        atten = F.sigmoid(atten)
        out = x * atten + y * (1 - atten)
        out = self.conv_out(out)
        return out


class PPLiteSegRknn(nn.Layer):
    """
    The PP_LiteSeg implementation based on PaddlePaddle. 适配RKNN模型

    The original article refers to "Juncai Peng, Yi Liu, Shiyu Tang, Yuying Hao, Lutao Chu,
    Guowei Chen, Zewu Wu, Zeyu Chen, Zhiliang Yu, Yuning Du, Qingqing Dang,Baohua Lai,
    Qiwen Liu, Xiaoguang Hu, Dianhai Yu, Yanjun Ma. PP-LiteSeg: A Superior Real-Time Semantic
    Segmentation Model. https://arxiv.org/abs/2204.02681".

    Args:
        num_classes (int): The number of target classes.
        backbone(nn.Layer): Backbone network, such as stdc1net and resnet18. The backbone must
            has feat_channels, of which the length is 5.
        backbone_indices (List(int), optional): The values indicate the indices of output of backbone.
            Default: [2, 3, 4].
        arm_type (str, optional): The type of attention refinement module. Default: ARM_Add_SpAttenAdd3.
        cm_bin_sizes (List(int), optional): The bin size of context module. Default: [1,2,4].
        cm_out_ch (int, optional): The output channel of the last context module. Default: 128.
        arm_out_chs (List(int), optional): The out channels of each arm module. Default: [64, 96, 128].
        seg_head_inter_chs (List(int), optional): The intermediate channels of segmentation head.
            Default: [64, 64, 64].
        resize_mode (str, optional): The resize mode for the upsampling operation in decoder.
            Default: bilinear.
        pretrained (str, optional): The path or url of pretrained model. Default: None.

    """

    def __init__(self,
                 num_classes,
                 backbone,
                 backbone_indices=[1, 2, 3],
                 cm_bin_sizes=[1, 2, 3],
                 cm_out_ch=128,
                 arm_out_chs=[32, 64, 96],
                 seg_head_inter_chs=[64, 64, 64],
                 resize_mode='bilinear'):
        super().__init__()

        # backbone
        assert hasattr(backbone, 'feat_channels'), \
            "The backbone should has feat_channels."
        assert len(backbone.feat_channels) >= len(backbone_indices), \
            f"The length of input backbone_indices ({len(backbone_indices)}) should not be" \
            f"greater than the length of feat_channels ({len(backbone.feat_channels)})."
        assert len(backbone.feat_channels) > max(backbone_indices), \
            f"The max value ({max(backbone_indices)}) of backbone_indices should be " \
            f"less than the length of feat_channels ({len(backbone.feat_channels)})."
        self.backbone = backbone

        assert len(backbone_indices) > 1, "The lenght of backbone_indices " \
                                          "should be greater than 1"
        self.backbone_indices = backbone_indices  # [..., x16_id, x32_id]
        backbone_out_chs = [backbone.feat_channels[i] for i in backbone_indices]

        # head
        if len(arm_out_chs) == 1:
            arm_out_chs = arm_out_chs * len(backbone_indices)
        assert len(arm_out_chs) == len(backbone_indices), "The length of " \
                                                          "arm_out_chs and backbone_indices should be equal"

        self.ppseg_head = PPLiteSegHead(backbone_out_chs, arm_out_chs,
                                        cm_bin_sizes, cm_out_ch,
                                        resize_mode)

        if len(seg_head_inter_chs) == 1:
            seg_head_inter_chs = seg_head_inter_chs * len(backbone_indices)
        assert len(seg_head_inter_chs) == len(backbone_indices), "The length of " \
                                                                 "seg_head_inter_chs and backbone_indices should be equal"
        self.seg_heads = nn.LayerList()  # [..., head_16, head32]
        for in_ch, mid_ch in zip(arm_out_chs, seg_head_inter_chs):
            self.seg_heads.append(SegHead(in_ch, mid_ch, num_classes))

    def forward(self, x):
        x_hw = paddle.shape(x)[2:]

        feats_backbone = self.backbone(x)  # [x2, x4, x8, x16, x32]
        assert len(feats_backbone) >= len(self.backbone_indices), \
            f"The nums of backbone feats ({len(feats_backbone)}) should be greater or " \
            f"equal than the nums of backbone_indices ({len(self.backbone_indices)})"

        feats_selected = [feats_backbone[i] for i in self.backbone_indices]

        feats_head = self.ppseg_head(feats_selected)  # [..., x8, x16, x32]

        if self.training:
            logit_list = []

            for x, seg_head in zip(feats_head, self.seg_heads):
                x = seg_head(x)
                logit_list.append(x)

            logit_list = [
                F.interpolate(
                    x, x_hw, mode='bilinear', align_corners=False)
                for x in logit_list
            ]
        else:
            x = self.seg_heads[0](feats_head[0])
            x = F.interpolate(x, x_hw, mode='bilinear', align_corners=False)
            logit_list = [x]

        return logit_list


class PPLiteSegHead(nn.Layer):
    """
    The head of PPLiteSegRknn.

    Args:
        backbone_out_chs (List(Tensor)): The channels of output tensors in the backbone.
        arm_out_chs (List(int)): The out channels of each arm module.
        cm_bin_sizes (List(int)): The bin size of context module.
        cm_out_ch (int): The output channel of the last context module.
        arm_type (str): The type of attention refinement module.
        resize_mode (str): The resize mode for the upsampling operation in decoder.
    """

    def __init__(self, backbone_out_chs, arm_out_chs, cm_bin_sizes, cm_out_ch, resize_mode):
        super().__init__()

        self.cm = PPContextModule(backbone_out_chs[-1], cm_out_ch, cm_out_ch,
                                  cm_bin_sizes)

        arm_class = UAFM_SpAtten_S

        self.arm_list = nn.LayerList()  # [..., arm8, arm16, arm32]
        for i in range(len(backbone_out_chs)):
            low_chs = backbone_out_chs[i]
            high_ch = cm_out_ch if i == len(
                backbone_out_chs) - 1 else arm_out_chs[i + 1]
            out_ch = arm_out_chs[i]
            arm = arm_class(
                low_chs, high_ch, out_ch, ksize=3, resize_mode=resize_mode)
            self.arm_list.append(arm)

    def forward(self, in_feat_list):
        """
        Args:
            in_feat_list (List(Tensor)): Such as [x2, x4, x8, x16, x32].
                x2, x4 and x8 are optional.
        Returns:
            out_feat_list (List(Tensor)): Such as [x2, x4, x8, x16, x32].
                x2, x4 and x8 are optional.
                The length of in_feat_list and out_feat_list are the same.
        """

        high_feat = self.cm(in_feat_list[-1])
        out_feat_list = []

        for i in reversed(range(len(in_feat_list))):
            low_feat = in_feat_list[i]
            arm = self.arm_list[i]
            high_feat = arm(low_feat, high_feat)
            out_feat_list.insert(0, high_feat)

        return out_feat_list


class PPContextModule(nn.Layer):
    """
    Simple Context module.

    Args:
        in_channels (int): The number of input channels to pyramid pooling module.
        inter_channels (int): The number of inter channels to pyramid pooling module.
        out_channels (int): The number of output channels after pyramid pooling module.
        bin_sizes (tuple, optional): The out size of pooled feature maps. Default: (1, 3).
        align_corners (bool): An argument of F.interpolate. It should be set to False
            when the output size of feature is even, e.g. 1024x512, otherwise it is True, e.g. 769x769.
    """

    def __init__(self,
                 in_channels,
                 inter_channels,
                 out_channels,
                 bin_sizes,
                 align_corners=False):
        super().__init__()

        self.stages = nn.LayerList([
            self._make_stage(in_channels, inter_channels, size)
            for size in bin_sizes
        ])

        self.conv_out = ConvBNReLU(
            in_channels=inter_channels,
            out_channels=out_channels,
            kernel_size=3,
            padding=1)

        self.align_corners = align_corners

    def _make_stage(self, in_channels, out_channels, size):
        prior = nn.AdaptiveAvgPool2D(output_size=size)
        conv = ConvBNReLU(
            in_channels=in_channels, out_channels=out_channels, kernel_size=1)
        return nn.Sequential(prior, conv)

    def forward(self, input):
        out = None
        input_shape = paddle.shape(input)[2:]

        for stage in self.stages:
            x = stage(input)
            x = F.interpolate(
                x,
                input_shape,
                mode='bilinear',
                align_corners=self.align_corners)
            if out is None:
                out = x
            else:
                out += x

        out = self.conv_out(out)
        return out


class SegHead(nn.Layer):
    def __init__(self, in_chan, mid_chan, n_classes):
        super().__init__()
        self.conv = ConvBNReLU(
            in_chan,
            mid_chan,
            kernel_size=3,
            stride=1,
            padding=1,
            bias_attr=False)
        self.conv_out = nn.Conv2D(
            mid_chan, n_classes, kernel_size=1, bias_attr=False)

    def forward(self, x):
        x = self.conv(x)
        x = self.conv_out(x)
        return x


if __name__ == "__main__":
    import time
    import warnings
    import numpy as np
    from paddle.static import InputSpec

    warnings.filterwarnings('ignore')

    net = PPLiteSegRknn(num_classes=3, backbone=ShuffleNetV2_x0_25())

    total = sum([np.prod(param.shape) for param in net.parameters()])
    print(f"模型参数量:{total / 1e6} M")
    encoder_params = sum([np.prod(p.shape) for p in net.backbone.parameters()])
    print(f'encoder参数量:{encoder_params / 1e6} M')
    net.eval()

    inputTensor = paddle.rand((1, 3, 768, 1024))
    outputTensor = None
    test_num = 10
    count = 0
    cost_time = 0.0
    for i in range(test_num):
        count += 1
        t1 = time.time()
        outputTensor = net(inputTensor)
        t2 = time.time()
        if count > 1:
            cost_time += (t2 - t1) * 1000

    print(f'average cost time:{cost_time / (count - 1)}ms')
    print(f'len(outputTensor)={len(outputTensor)}')
    print(f'type(outputTensor)={type(outputTensor)}')
    print(f'type(outputTensor[0])={type(outputTensor[0])}')
    print(f'outputTensor[0].shape={outputTensor[0].shape}')
点击并拖拽以移动

v2版本

python 复制代码
from paddle import ParamAttr, reshape, transpose, concat, split
from paddle.nn.initializer import KaimingNormal
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class CostomAdaptiveAvgPool2D(nn.Layer):

    def __init__(self, output_size, input_size):

        super(CostomAdaptiveAvgPool2D, self).__init__()

        self.output_size = output_size
        self.input_size = input_size

    def forward(self, x):

        H_in, W_in = self.input_size
        H_out, W_out = [self.output_size, self.output_size] \
            if isinstance(self.output_size, int) \
            else self.output_size

        out_i = []
        for i in range(H_out):
            out_j = []
            for j in range(W_out):
                hs = int(np.floor(i * H_in / H_out))
                he = int(np.ceil((i + 1) * H_in / H_out))

                ws = int(np.floor(j * W_in / W_out))
                we = int(np.ceil((j + 1) * W_in / W_out))

                # print(hs, he, ws, we)
                kernel_size = [he - hs, we - ws]

                out = F.avg_pool2d(x[:, :, hs:he, ws:we], kernel_size)
                out_j.append(out)

            out_j = paddle.concat(out_j, -1)
            out_i.append(out_j)

        out_i = paddle.concat(out_i, -2)
        return out_i


def channel_shuffle(x, groups):
    x_shape = paddle.shape(x)
    batch_size, height, width = x_shape[0], x_shape[2], x_shape[3]
    num_channels = x.shape[1]
    channels_per_group = num_channels // groups

    # reshape
    x = reshape(
        x=x, shape=[batch_size, groups, channels_per_group, height, width])

    # transpose
    x = transpose(x=x, perm=[0, 2, 1, 3, 4])

    # flatten
    x = reshape(x=x, shape=[batch_size, num_channels, height, width])

    return x


class ConvBNLayer(nn.Layer):
    def __init__(
            self,
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding,
            groups=1,
            act=None,
            name=None, ):
        super(ConvBNLayer, self).__init__()
        self._conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=ParamAttr(
                initializer=KaimingNormal(), name=name + "_weights"),
            bias_attr=False)

        self._batch_norm = nn.BatchNorm(
            out_channels,
            param_attr=ParamAttr(name=name + "_bn_scale"),
            bias_attr=ParamAttr(name=name + "_bn_offset"),
            act=act,
            moving_mean_name=name + "_bn_mean",
            moving_variance_name=name + "_bn_variance")

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class InvertedResidual(nn.Layer):
    def __init__(self, in_channels, out_channels, stride, act="relu",
                 name=None):
        super(InvertedResidual, self).__init__()
        self._conv_pw = ConvBNLayer(
            in_channels=in_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act,
            name='stage_' + name + '_conv1')
        self._conv_dw = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=out_channels // 2,
            act=None,
            name='stage_' + name + '_conv2')
        self._conv_linear = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act,
            name='stage_' + name + '_conv3')

    def forward(self, inputs):
        x1, x2 = split(
            inputs,
            num_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2],
            axis=1)
        x2 = self._conv_pw(x2)
        x2 = self._conv_dw(x2)
        x2 = self._conv_linear(x2)
        out = concat([x1, x2], axis=1)
        return channel_shuffle(out, 2)


class InvertedResidualDS(nn.Layer):
    def __init__(self, in_channels, out_channels, stride, act="relu",
                 name=None):
        super(InvertedResidualDS, self).__init__()

        # branch1
        self._conv_dw_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=in_channels,
            act=None,
            name='stage_' + name + '_conv4')
        self._conv_linear_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act,
            name='stage_' + name + '_conv5')
        # branch2
        self._conv_pw_2 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act,
            name='stage_' + name + '_conv1')
        self._conv_dw_2 = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=out_channels // 2,
            act=None,
            name='stage_' + name + '_conv2')
        self._conv_linear_2 = ConvBNLayer(
            in_channels=out_channels // 2,
            out_channels=out_channels // 2,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            act=act,
            name='stage_' + name + '_conv3')

    def forward(self, inputs):
        x1 = self._conv_dw_1(inputs)
        x1 = self._conv_linear_1(x1)
        x2 = self._conv_pw_2(inputs)
        x2 = self._conv_dw_2(x2)
        x2 = self._conv_linear_2(x2)
        out = concat([x1, x2], axis=1)

        return channel_shuffle(out, 2)


class ShuffleNet(nn.Layer):
    def __init__(self, scale=1.0, act="relu", in_channels=3, pretrained=None):
        super(ShuffleNet, self).__init__()
        self.scale = scale
        self.pretrained = pretrained
        stage_repeats = [4, 8, 4]

        if scale == 0.25:
            stage_out_channels = [-1, 24, 24, 48, 96, 512]
        elif scale == 0.33:
            stage_out_channels = [-1, 24, 32, 64, 128, 512]
        elif scale == 0.5:
            stage_out_channels = [-1, 24, 48, 96, 192, 1024]
        elif scale == 1.0:
            stage_out_channels = [-1, 24, 116, 232, 464, 1024]
        elif scale == 1.5:
            stage_out_channels = [-1, 24, 176, 352, 704, 1024]
        elif scale == 2.0:
            stage_out_channels = [-1, 24, 224, 488, 976, 2048]
        else:
            raise NotImplementedError("This scale size:[" + str(scale) +
                                      "] is not implemented!")

        self.out_index = [3, 11, 15]
        self.feat_channels = stage_out_channels[1:5]

        # 1. conv1
        self._conv1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=stage_out_channels[1],
            kernel_size=3,
            stride=2,
            padding=1,
            act=act,
            name='stage1_conv')
        self._max_pool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)

        # 2. bottleneck sequences
        self._block_list = []
        for stage_id, num_repeat in enumerate(stage_repeats):
            for i in range(num_repeat):
                if i == 0:
                    block = self.add_sublayer(
                        name=str(stage_id + 2) + '_' + str(i + 1),
                        sublayer=InvertedResidualDS(
                            in_channels=stage_out_channels[stage_id + 1],
                            out_channels=stage_out_channels[stage_id + 2],
                            stride=2,
                            act=act,
                            name=str(stage_id + 2) + '_' + str(i + 1)))
                else:
                    block = self.add_sublayer(
                        name=str(stage_id + 2) + '_' + str(i + 1),
                        sublayer=InvertedResidual(
                            in_channels=stage_out_channels[stage_id + 2],
                            out_channels=stage_out_channels[stage_id + 2],
                            stride=1,
                            act=act,
                            name=str(stage_id + 2) + '_' + str(i + 1)))
                self._block_list.append(block)

    def forward(self, inputs):
        feat_list = []

        y = self._conv1(inputs)
        y = self._max_pool(y)
        feat_list.append(y)

        for idx, inv in enumerate(self._block_list):
            y = inv(y)
            if idx in self.out_index:
                feat_list.append(y)
        return feat_list


def ShuffleNetV2_x0_25(**kwargs):
    model = ShuffleNet(scale=0.25, **kwargs)
    return model


class ConvBNReLU(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 padding='same',
                 **kwargs):
        super().__init__()

        self._conv = nn.Conv2D(
            in_channels, out_channels, kernel_size, padding=padding, **kwargs)
        self._batch_norm = nn.BatchNorm2D(out_channels, data_format='NCHW')
        self._relu = nn.layer.activation.ReLU()

    def forward(self, x):
        x = self._conv(x)
        x = self._batch_norm(x)
        x = self._relu(x)
        return x


class ConvBN(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 padding='same',
                 **kwargs):
        super().__init__()
        self._conv = nn.Conv2D(
            in_channels, out_channels, kernel_size, padding=padding, **kwargs)
        self._batch_norm = nn.BatchNorm2D(out_channels, data_format='NCHW')

    def forward(self, x):
        x = self._conv(x)
        x = self._batch_norm(x)
        return x


class UAFM(nn.Layer):
    """
    The base of Unified Attention Fusion Module.
    Args:
        x_ch (int): The channel of x tensor, which is the low level feature.
        y_ch (int): The channel of y tensor, which is the high level feature.
        out_ch (int): The channel of output tensor.
        ksize (int, optional): The kernel size of the conv for x tensor. Default: 3.
        resize_mode (str, optional): The resize model in unsampling y tensor. Default: bilinear.
    """

    def __init__(self, x_ch, y_ch, out_ch, ksize=3, resize_mode='bilinear'):
        super().__init__()
        self.conv_x = ConvBNReLU(
            x_ch, y_ch, kernel_size=ksize, padding=ksize // 2, bias_attr=False)
        self.conv_out = ConvBNReLU(
            y_ch, out_ch, kernel_size=3, padding=1, bias_attr=False)
        self.resize_mode = resize_mode

    def check(self, x, y):
        x_h, x_w = x.shape[2:]
        y_h, y_w = y.shape[2:]

    def prepare(self, x, y):
        x = self.prepare_x(x, y)
        y = self.prepare_y(x, y)
        return x, y

    def prepare_x(self, x, y):
        x = self.conv_x(x)
        return x

    def prepare_y(self, x, y):
        y_up = F.interpolate(y, paddle.shape(x)[2:], mode=self.resize_mode)
        return y_up

    def fuse(self, x, y):
        out = x + y
        out = self.conv_out(out)
        return out

    def forward(self, x, y):
        """
        Args:
            x (Tensor): The low level feature.
            y (Tensor): The high level feature.
        """
        self.check(x, y)
        x, y = self.prepare(x, y)
        out = self.fuse(x, y)
        return out


def avg_reduce_channel(x):
    # Reduce channel by avg
    # Return cat([avg_ch_0, avg_ch_1, ...])
    if not isinstance(x, (list, tuple)):
        return paddle.mean(x, axis=1, keepdim=True)
    elif len(x) == 1:
        return paddle.mean(x[0], axis=1, keepdim=True)
    else:
        res = []
        for xi in x:
            res.append(paddle.mean(xi, axis=1, keepdim=True))
        return paddle.concat(res, axis=1)


class UAFM_SpAtten_S(UAFM):
    """
    The UAFM with spatial attention, which uses mean values.
    Args:
        x_ch (int): The channel of x tensor, which is the low level feature.
        y_ch (int): The channel of y tensor, which is the high level feature.
        out_ch (int): The channel of output tensor.
        ksize (int, optional): The kernel size of the conv for x tensor. Default: 3.
        resize_mode (str, optional): The resize model in unsampling y tensor. Default: bilinear.
    """

    def __init__(self, x_ch, y_ch, out_ch, ksize=3, resize_mode='bilinear'):
        super().__init__(x_ch, y_ch, out_ch, ksize, resize_mode)

        self.conv_xy_atten = nn.Sequential(
            ConvBNReLU(
                2, 2, kernel_size=3, padding=1, bias_attr=False),
            ConvBN(
                2, 1, kernel_size=3, padding=1, bias_attr=False))

    def fuse(self, x, y):
        """
        Args:
            x (Tensor): The low level feature.
            y (Tensor): The high level feature.
        """
        atten = avg_reduce_channel([x, y])
        atten = self.conv_xy_atten(atten)
        atten = F.sigmoid(atten)
        out = x * atten + y * (1 - atten)
        out = self.conv_out(out)
        return out


class PPLiteSegRknn(nn.Layer):
    """
    The PP_LiteSeg implementation based on PaddlePaddle. 适配RKNN模型

    The original article refers to "Juncai Peng, Yi Liu, Shiyu Tang, Yuying Hao, Lutao Chu,
    Guowei Chen, Zewu Wu, Zeyu Chen, Zhiliang Yu, Yuning Du, Qingqing Dang,Baohua Lai,
    Qiwen Liu, Xiaoguang Hu, Dianhai Yu, Yanjun Ma. PP-LiteSeg: A Superior Real-Time Semantic
    Segmentation Model. https://arxiv.org/abs/2204.02681".

    Args:
        num_classes (int): The number of target classes.
        backbone(nn.Layer): Backbone network, such as stdc1net and resnet18. The backbone must
            has feat_channels, of which the length is 5.
        backbone_indices (List(int), optional): The values indicate the indices of output of backbone.
            Default: [2, 3, 4].
        arm_type (str, optional): The type of attention refinement module. Default: ARM_Add_SpAttenAdd3.
        cm_bin_sizes (List(int), optional): The bin size of context module. Default: [1,2,4].
        cm_out_ch (int, optional): The output channel of the last context module. Default: 128.
        arm_out_chs (List(int), optional): The out channels of each arm module. Default: [64, 96, 128].
        seg_head_inter_chs (List(int), optional): The intermediate channels of segmentation head.
            Default: [64, 64, 64].
        resize_mode (str, optional): The resize mode for the upsampling operation in decoder.
            Default: bilinear.
        pretrained (str, optional): The path or url of pretrained model. Default: None.

    """

    def __init__(self,
                 num_classes,
                 backbone,
                 backbone_indices=[1, 2, 3],
                 cm_bin_sizes=[1, 2, 3],
                 cm_out_ch=128,
                 arm_out_chs=[32, 64, 96],
                 seg_head_inter_chs=[64, 64, 64],
                 resize_mode='bilinear'):
        super().__init__()

        # backbone
        assert hasattr(backbone, 'feat_channels'), \
            "The backbone should has feat_channels."
        assert len(backbone.feat_channels) >= len(backbone_indices), \
            f"The length of input backbone_indices ({len(backbone_indices)}) should not be" \
            f"greater than the length of feat_channels ({len(backbone.feat_channels)})."
        assert len(backbone.feat_channels) > max(backbone_indices), \
            f"The max value ({max(backbone_indices)}) of backbone_indices should be " \
            f"less than the length of feat_channels ({len(backbone.feat_channels)})."
        self.backbone = backbone

        assert len(backbone_indices) > 1, "The lenght of backbone_indices " \
                                          "should be greater than 1"
        self.backbone_indices = backbone_indices  # [..., x16_id, x32_id]
        backbone_out_chs = [backbone.feat_channels[i] for i in backbone_indices]

        # head
        if len(arm_out_chs) == 1:
            arm_out_chs = arm_out_chs * len(backbone_indices)
        assert len(arm_out_chs) == len(backbone_indices), "The length of " \
                                                          "arm_out_chs and backbone_indices should be equal"

        self.ppseg_head = PPLiteSegHead(backbone_out_chs, arm_out_chs,
                                        cm_bin_sizes, cm_out_ch,
                                        resize_mode)

        if len(seg_head_inter_chs) == 1:
            seg_head_inter_chs = seg_head_inter_chs * len(backbone_indices)
        assert len(seg_head_inter_chs) == len(backbone_indices), "The length of " \
                                                                 "seg_head_inter_chs and backbone_indices should be equal"
        self.seg_heads = nn.LayerList()  # [..., head_16, head32]
        for in_ch, mid_ch in zip(arm_out_chs, seg_head_inter_chs):
            self.seg_heads.append(SegHead(in_ch, mid_ch, num_classes))

    def forward(self, x):
        x_hw = paddle.shape(x)[2:]

        feats_backbone = self.backbone(x)  # [x2, x4, x8, x16, x32]
        assert len(feats_backbone) >= len(self.backbone_indices), \
            f"The nums of backbone feats ({len(feats_backbone)}) should be greater or " \
            f"equal than the nums of backbone_indices ({len(self.backbone_indices)})"

        feats_selected = [feats_backbone[i] for i in self.backbone_indices]

        feats_head = self.ppseg_head(feats_selected)  # [..., x8, x16, x32]

        if self.training:
            logit_list = []

            for x, seg_head in zip(feats_head, self.seg_heads):
                x = seg_head(x)
                logit_list.append(x)

            logit_list = [
                F.interpolate(
                    x, x_hw, mode='bilinear', align_corners=False)
                for x in logit_list
            ]
        else:
            x = self.seg_heads[0](feats_head[0])
            x = F.interpolate(x, x_hw, mode='bilinear', align_corners=False)
            logit_list = [x]

        return logit_list


class PPLiteSegHead(nn.Layer):
    """
    The head of PPLiteSegRknn.

    Args:
        backbone_out_chs (List(Tensor)): The channels of output tensors in the backbone.
        arm_out_chs (List(int)): The out channels of each arm module.
        cm_bin_sizes (List(int)): The bin size of context module.
        cm_out_ch (int): The output channel of the last context module.
        arm_type (str): The type of attention refinement module.
        resize_mode (str): The resize mode for the upsampling operation in decoder.
    """

    def __init__(self, backbone_out_chs, arm_out_chs, cm_bin_sizes, cm_out_ch, resize_mode):
        super().__init__()

        self.cm = PPContextModule(backbone_out_chs[-1], cm_out_ch, cm_out_ch,
                                  cm_bin_sizes)

        arm_class = UAFM_SpAtten_S

        self.arm_list = nn.LayerList()  # [..., arm8, arm16, arm32]
        for i in range(len(backbone_out_chs)):
            low_chs = backbone_out_chs[i]
            high_ch = cm_out_ch if i == len(
                backbone_out_chs) - 1 else arm_out_chs[i + 1]
            out_ch = arm_out_chs[i]
            arm = arm_class(
                low_chs, high_ch, out_ch, ksize=3, resize_mode=resize_mode)
            self.arm_list.append(arm)

    def forward(self, in_feat_list):
        """
        Args:
            in_feat_list (List(Tensor)): Such as [x2, x4, x8, x16, x32].
                x2, x4 and x8 are optional.
        Returns:
            out_feat_list (List(Tensor)): Such as [x2, x4, x8, x16, x32].
                x2, x4 and x8 are optional.
                The length of in_feat_list and out_feat_list are the same.
        """

        high_feat = self.cm(in_feat_list[-1])
        out_feat_list = []

        for i in reversed(range(len(in_feat_list))):
            low_feat = in_feat_list[i]
            arm = self.arm_list[i]
            high_feat = arm(low_feat, high_feat)
            out_feat_list.insert(0, high_feat)

        return out_feat_list


class PPContextModule(nn.Layer):
    """
    Simple Context module.

    Args:
        in_channels (int): The number of input channels to pyramid pooling module.
        inter_channels (int): The number of inter channels to pyramid pooling module.
        out_channels (int): The number of output channels after pyramid pooling module.
        bin_sizes (tuple, optional): The out size of pooled feature maps. Default: (1, 3).
        align_corners (bool): An argument of F.interpolate. It should be set to False
            when the output size of feature is even, e.g. 1024x512, otherwise it is True, e.g. 769x769.
    """

    def __init__(self,
                 in_channels,
                 inter_channels,
                 out_channels,
                 bin_sizes,
                 align_corners=False):
        super().__init__()

        self.stages = nn.LayerList([
            self._make_stage(in_channels, inter_channels, size)
            for size in bin_sizes
        ])

        self.conv_out = ConvBNReLU(
            in_channels=inter_channels,
            out_channels=out_channels,
            kernel_size=3,
            padding=1)

        self.align_corners = align_corners

    def _make_stage(self, in_channels, out_channels, size):
        # prior = nn.AdaptiveAvgPool2D(output_size=size)
        # prior = CostomAdaptiveAvgPool2D(output_size=size, input_size=(24, 32))

        prior = nn.AvgPool2D(kernel_size=size)
        conv = ConvBNReLU(
            in_channels=in_channels, out_channels=out_channels, kernel_size=1)
        return nn.Sequential(prior, conv)

    def forward(self, input):
        out = None
        input_shape = paddle.shape(input)[2:]

        for stage in self.stages:
            x = stage(input)
            x = F.interpolate(
                x,
                input_shape,
                mode='bilinear',
                align_corners=self.align_corners)
            if out is None:
                out = x
            else:
                out += x

        out = self.conv_out(out)
        return out


class SegHead(nn.Layer):
    def __init__(self, in_chan, mid_chan, n_classes):
        super().__init__()
        self.conv = ConvBNReLU(
            in_chan,
            mid_chan,
            kernel_size=3,
            stride=1,
            padding=1,
            bias_attr=False)
        self.conv_out = nn.Conv2D(
            mid_chan, n_classes, kernel_size=1, bias_attr=False)

    def forward(self, x):
        x = self.conv(x)
        x = self.conv_out(x)
        return x


if __name__ == "__main__":
    """
    paddle版本确保一致
    pip install --upgrade "paddlepaddle==2.6.*" "paddle2onnx==1.0.*"
    """
    import time
    import warnings
    import numpy as np
    from paddle.static import InputSpec

    warnings.filterwarnings('ignore')

    net = PPLiteSegRknn(num_classes=3, backbone=ShuffleNetV2_x0_25())

    total = sum([np.prod(param.shape) for param in net.parameters()])
    print(f"模型参数量:{total / 1e6} M")
    encoder_params = sum([np.prod(p.shape) for p in net.backbone.parameters()])
    print(f'encoder参数量:{encoder_params / 1e6} M')
    net.eval()

    from paddle.static import InputSpec

    spec = [InputSpec(shape=[None, 3, 768, 1024], dtype='float32', name='image')]
    paddle.onnx.export(
        net,
        "ppliteseg_rknn_v0911",
        input_spec=spec,
        opset_version=13,  # 建议>=12,兼容插值/激活等算子
        enable_onnx_checker=True
    )

    # test_num = 10
    # count = 0
    # cost_time = 0.0
    # for i in range(test_num):
    #     count += 1
    #     t1 = time.time()
    #     outputTensor = net(inputTensor)
    #     t2 = time.time()
    #     if count > 1:
    #         cost_time += (t2 - t1) * 1000
    #
    # print(f'average cost time:{cost_time / (count - 1)}ms')
    # print(f'len(outputTensor)={len(outputTensor)}')
    # print(f'type(outputTensor)={type(outputTensor)}')
    # print(f'type(outputTensor[0])={type(outputTensor[0])}')
    # print(f'outputTensor[0].shape={outputTensor[0].shape}')
相关推荐
阿十六5 分钟前
OUC AI Lab 第六章:基于卷积的注意力机制
人工智能
二进制的Liao7 分钟前
【编程】脚本编写入门:从零到一的自动化之旅
数据库·python·算法·自动化·bash
努力の小熊20 分钟前
基于tensorflow框架的MSCNN-LSTM模型在CWRU轴承故障诊断的应用
人工智能·tensorflow·lstm
AI即插即用23 分钟前
即插即用涨点系列 (八):AMDNet 详解!AAAI 2025 SOTA,MLP 融合多尺度分解(MDM)与 AMS 的涨点新范式。
人工智能·pytorch·深度学习·目标检测·计算机视觉·transformer
脑极体23 分钟前
穿越沙海:中国AI的中东远征
人工智能·搜索引擎
jn1001053730 分钟前
【概念科普】原位CT(In-situ CT)技术详解:从定义到应用的系统梳理
人工智能
禾风wyh1 小时前
(ICLR 2019)APPNP传播用 PageRank,不用神经网络!
人工智能·深度学习·神经网络
Dxy12393102161 小时前
Python为什么要使用可迭代对象
开发语言·python
Keep_Trying_Go1 小时前
论文STEERER人群计数,车辆计数以及农作物计数算法详解(pytorch)
人工智能·pytorch·python
gzu_011 小时前
基于昇腾 配置pytorch环境
人工智能·pytorch·python